Background. Published simulator studies for metal/UHMWPE
Expectations for ceramic-on-metal (COM)
Introduction. Previous registry studies of ceramic-on-polyethylene (C-PE) and ceramic-on-ceramic (COC) have focused on revision outcomes following primary surgery. Less is known about the effect of ceramic
Introduction and Aims. There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of edge loading under the combination of such conditions. Then, assess the safety and reliability of the implant by predicting the wear, deformation and damage of the implant
Introduction. Previous studies of ceramic-on-polyethylene (C-PE) and ceramic-on-ceramic (COC) hip
Introduction. Looking for optimal solutions to wear risks evident in total hip arthroplasty (THA), silicon nitride ceramic
Introduction. Are there really ‘conventional’
Introduction. Dislocation is one of the major factors for revision surgery. Current literature states that the usage of larger bearing couples (> 36 mm) have the potential of reducing the risk of dislocation. Smaller ceramic-on-ceramic bearing couples (< 36 mm) have demonstrated very low wear rates. But does the wear behaviour change with increasing diameter? Therefore, the aim of this study was to compare wear rates of larger ceramic-on-ceramic bearing couples for total hip arthroplasty. Materials and Methods. Wear tests according to ISO 14242 with 36, 40 and 44 mm zirconia platelet toughened alumina (ZPTA)
Introduction and Aims. The 21. st. Century has seen ceramic
Due to issues related to osteolysis which became increasingly evident in the 1990's, approaches to combat wear focused upon either improving ultra-high molecular grade polyethylene or to abandon it and employ alternative
Purpose. Metal-on-Metal (MoM) hip
Purpose. There are concerns of soft-tissue reactions such as metal hypersensitivity or pseudotumors for metal-on-metal (MoM)
Purpose. The fourth generation ceramic, in which zirconia is incorporated into the alumina matrix, was developed to reduce the risk of ceramic fractures. The purpose of this study was to evaluate the survivorship, clinical and radiographic results, and bearing-related failures associated with total hip arthroplasty using zirconia-toughened alumina ceramic-on-ceramic
Dislocation and instability remain leading cause of failure following THA. We present a single-surgeon 10-year experience with use of Dual Mobility (DM)
Introduction and Aims. Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic
Hip simulator studies on MOM
Introduction. Hip simulators proved to be valuable, pre-clinical tests for assessing wear. Preferred implant positioning has been with cup mounted above head, i.e. ‘Anatomical’ (Figs. 1a-c) . 1,2. while the ‘Inverted’ test (cup below head) was typically preferred in debris studies (Figs. 1d-f). 3,4. In an Anatomical study, wear patterns on cups and heads averaged 442 and 1668 mm² area, respectively, representing 8% and 30% of available hemi-surface (Table 1), i.e. the head pattern was ×3.8 times larger than cup. This concept of wear patterns is illustrated well in the ‘pin-on-disk’ test (Fig. 1) in which the oscillating pin has the ‘contained’ wear area (CWP) and the large wear track on the disk is the ‘distributed’ pattern (DWP). Hip simulators also create CWP and DWP patterns, site dependant on whether Anatomical (Fig. 1a-c) or ‘Inverted’ (Fig. 1d-f) test. However there is scant foundation as to clinical merits of either test mode. Retrieval studies of MOM
Metal
INTRODUCTION. Ceramic-on-ceramic hip replacements have generated great interest in recent years due to substantial improvements in manufacturing techniques and material properties. 1. Microseparation conditions that could occur due to several clinical factors such as head offset deficiency, medialised cup combined with laxity of soft tissue resulting in a translation malalignment, have been shown to cause edge loading, replicate clinically relevant wear mechanisms. 2,3. and increase the wear of ceramic-on-ceramic
Metal ion levels are used to track the performance of metal containing