Prosthetic Hip dislocations remain one of the most common major complications after total hip arthroplasty procedures, which has led to much debate and refinement geared to the optimization of implant and bearing options, surgical approaches, and technique. The implementation of larger femoral heads has afforded patients a larger excursion distance and primary arc range motion before impingement, leading to lowered risk of hip dislocation. However, studies suggest that while the above remains true, the use of larger heads may contribute to increased volumetric wear, trunnion related corrosion, and an overall higher prevalence of loosening, pain, and patient dissatisfaction, which may require revision hip arthroplasty. More novel designs such as the dual mobility hip have been introduced into the United States to optimize stability and range of motion, while possibly lowering the frictional torque and modes of failure associated with larger fixed bearing articulations. Therefore, the aim of this study is to compare the effect of
Introduction. Total-knee-arthroplasty (TKA) is a well-established method to restore the joint function of the human knee. Different types of TKA designs are clinically available which can be divided in two main groups, the posterior-cruciate- ligament (PCL) sacrificing and retaining group. However, pre-operatively it is often difficult to plan for one or the other. Therefore, the research question was: Is it possible to develop a TKA
Total knee arthroplasty using navigation system is known to be more effective than conventional methods in achieving more accurate bone resection and neutral alignment. Mobile bearing is also known to reduce wear and automatically correct rotational mal-alignment of the tibia but the long-term follow-up results of more than 10 years are extremely rare. The purpose of this study is to investigate the results of clinical and radiologic long-term follow-up and complications of total knee arthroplasty using navigation and multi-directional mobile bearing. From 2003 to 2006, a total of 111 navigation TKAs using multi-directional mobile
Wear and polyethylene damage have been implicated in up to 22% of revision surgeries after unicompartmental knee replacement. Two major design rationales to reduce this rate involve either geometry and/or material strategies. Geometric options involve highly congruent mobile bearings with large contact areas; or moderately conforming fixed bearings to prevent bearing dislocation and reduce back-side wear, while material changes involve use of highly crosslinked polyethylene. This study was designed to determine if a highly crosslinked fixed-bearing design would increase wear resistance. Gravimetric wear rates were measured for two unicompartmental implant designs: Oxford unicompartmental (Biomet) and Triathlon X3 PKR (Stryker) on a knee wear simulator (AMTI) using the ISO-recommended standard. The Oxford design had a highly conforming mobile bearing of compression molded Polyethylene (Arcom). The Triathlon PKR had a moderately conforming fixed bearing of sequentially crosslinked Polyethylene (X3). A finite element model of the AMTI wear simulation was constructed to replicate experimental conditions and to compute wear. This approach was validated using experimental results from previous studies. The wear coefficient obtained previously for radiation-sterilized low crosslinked polyethylene was used to predict wear in Oxford components. The wear coefficient obtained for highly crosslinked polyethylene was used to predict wear in Triathlon X3 PKR components. To study the effect design and polyethylene crosslinking, wear rates were computed for each design using both wear coefficients.INTRODUCTION
METHODS
The intact, healthy human knee joint is stable under anterior-posterior (AP) loading but allows for substantial internal-external (IE) laxity. In vivo clinical studies of the intact knee consistently demonstrate femoral rollback with flexion (Hill et al., 2000, Dennis et al., 2005). A tri-condylar, posterior stabilized (PS) total knee arthroplasty (TKA) with a rotating platform bearing (TKA-A) has been designed to address these characteristics of the intact knee. The third condyle is designed to guide the femoral component throughout the entire flexion arc (AP stability and femoral rollback with flexion), while the rotating platform bearing allows for IE rotation. This study used a computer model to compare the AP and IE laxity of a new TKA-A to that of two clinically established TKAs (TKA-B: rotating PS TKA, TKA-C: fixed PS TKA) and to demonstrate improvements in AP stability, IE rotation, and femoral rollback. A specimen-specific, robotically calibrated computer knee model (Siggelkow et al., 2012), consisting of the femur, tibia and fibula as well as the kinetic contribution of the ligaments and capsule was virtually implanted with appropriate sizes of TKA-A, TKA-B and TKA-C adhering to the respective surgical techniques. A similar extension gap was targeted for all designs. The following kinematic data resulting from applied loads and moments were analyzed: 1) Passive AP and IE laxity (AP load: ± 50 N, IE moment: ± 6 Nm) of the midpoint between the flexion facet centers (Iwaki et al., JBJS, 2000) under low compression (44 N), 2) AP position of the medial and lateral low points (LP) of the femoral component during a lunge motion (Varadarajan et al., 2008).INTRODUCTION
METHODS
Introduction. In an effort to provide a TKA bearing material that balances resistance to wear, mechanical failure and oxidation, manufacturers introduced antioxidant polyethylene. In many designs, this is accomplished through pre-blending the polymer with the antioxidant before consolidation and radiation crosslinking. This study reports the wear performance (in terms of thickness change) of a hindered phenol (PBHP) UHMWPE from analysis of an early series of knee retrievals and explores these questions: 1) What is early-time performance of this new bearing material? 2) Is there a difference in performance between fixed and mobile bearings in this design? 3) How does quantitative surface analysis help understand performance at the insert-tray modular interface?. Methods. A series of 100 consecutive Attune™ knee inserts (DePuy Synthes, Warsaw, IN) received at revision by an IRB approved retrieval laboratory between September 2014 and March 2019 were investigated. In vivo duration was 0–52 months. Both the fixed
Introduction. In total knee arthroplasty, the alignment of leg depends on the alignment of the component. In unicompartmental knee arthroplasty, it is determined by the thickness of the implant relative to the bone excised mostly. After initial scepticism, UKA is increasingly accepted as a reliable procedure for unicompartmental knee osteoarthritis with the improvements in implant design, surgical technique and appropriate patient selection. Recently, computer assisted UKA is helpful in accuracy and less invasive procedure. But, fixed bearing or mobile bearing in UKA is still controversy. We compared the early clinical and radiological results of robot-assisted unicompartmental knee arthroplasty using a fixed
Introduction. Total-knee-arthroplasty (TKA) is used to restore knee function and is a well-established treatment of osteoarthritis. Along with the widely used fixed
Introduction. Special high-flexion prosthetic designs show a small increase in postoperative flexion compared to standard designs and some papers show increased anterior knee pain with these prosthesis. However, no randomised controlled trails have been published which investigate difference in postoperative complaints of anterior knee pain. To assess difference in passive and active postoperative flexion and anterior knee pain we performed a randomized clinical trial including the two extremes of knee arthroplasty designs, being a high flex posterior stabilized rotating platform prosthesis versus a traditional cruciate retaining fixed bearing prosthesis. We hypothesised that the HF-PS design would allow more flexion, due to increased femoral rollback with less anterior knee pain than the CR design. We specifically assessed the following hypotheses:. Patients have increased flexion after HF-PS TKA compared to CR TKA, both passive and active. Patients show an increased femoral rollback in the HF-PS TKA as compared to the CR TKA. Patients receiving a HF-PS TKA design report reduced anterior knee pain relative to those receiving the CR TKA. Methods. In total 47 patients were randomly allocated to a standard cruciate retaining fixed
There is ongoing debate on the benefits of fixed versus mobile bearing Unicompartmental Knee Replacement (UKR). We report the results from a randomised controlled trial comparing fixed and mobile bearing of the same UKR prosthesis. Forty patients were randomized to receive identical femoral components and either a fixed or mobile bearing tibial component. At 6.5 years follow-up 37% of the mobile
Introduction. The mobile-bearings were introduced in total knee arthroplasty (TKA) to improve the knee performance by simulating more closely ‘normal’ knee kinematics, and to increase the longevity of TKA by reducing the polyethylene wear and periprosthetic osteolysis. However, the superiority between posterior-stabilized mobile-bearing and fixed-bearing designs still remains controversial. The objective of the present study was to compare the mid-term results of Scorpio + Single Axis system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the mobile-bearing knees and Duracon system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the fixed
INTRODUCTION. Aseptic loosening is the most common failure mode for Total Elbow Arthroplasty (TEA) and is considered to be associated with accelerated polyethylene bearing wear [1, 2]. This study aimed to evaluate three commercially available implant designs under loads associated with daily living. The hypothesis was that more recent designs (Discovery and Nexel) provide greater articular contact areas resulting in lower polyethylene stresses compared to the Coonrad/Morrey (CM). METHODS. Motion tracking was performed on a healthy volunteer during elbow flexion at 0, 45, and 90° shoulder abduction because most daily activities occur with some shoulder abduction [3] resulting in varus stress about the elbow. This kinematic data was used in an OpenSim upper extremity musculoskeletal model [4] to estimate muscle and joint reaction loads with 5lb in hand, consistent with the common clinical restrictions following TEA. Computer aided assemblies of the smallest size implants for each system were imported to ANSYS for finite element analysis. Metallic components were treated as rigid and polyethylene components were modeled using a nonlinear elastoplastic constitutive model calibrated to material data. Articular contacts were frictional. Physiologic joint reaction forces and moments quantified in OpenSim were applied and the resulting peak articular contact area and peak bearing von Mises stresses were assessed. RESULTS. Simulated deformation patterns of CM bearings corresponded well to those reported in retrievals studies [1, 2] supporting the clinical relevance of the modeling approach. Peak stresses for CM and Nexel were consistently found in the central and side bearings respectively. The central bearing stresses remained 2–2.6 times lower in Nexel compared to CM. Peak stress for all three TEA systems increased with shoulder abduction (Fig.1, 2). Highest peak stresses (Fig.2) were obtained in CM and consistently exceeded the polyethylene yield limit; CM showed the lowest contact area (Fig.3). Nexel and Discovery experienced peak polyethylene stresses 26–34% and 17–39% lower than CM respectively (Fig.2). DISCUSSION. Our results support the hypothesis that newer TEA systems provide increased articular contact area and reduced bearing stresses during physiological loading. The cylindrical CM central bearing carries both the joint reaction force and moment leading to edge loading and high stresses (Fig.1). The design of the Nexel central bearing provides limited resistance to varus-valgus moment, thus transferring the moment to the side bearings and reducing central bearing stresses. The hemispherical Discovery
Introduction. Complications related to the patellofemoral joint continue to be a substantial source of patient morbidity, causing anterior knee pain, instability, and dysfunction following total knee arthroplasty. One of the principle factors affecting patellofemoral outcomes may be trochlear design. The optimal design is currently unknown. The purpose of the present study was to study patellofemoral joint contact by analysing areas of wear in retrieved femoral components of three modern designs. Materials and Methods. Eighteen retrieved femoral components featuring three different designs (constant radius of rotation, multiple radii of rotation, and multiple radii of rotation with built-in external rotation design) were matched on the basis of time-in-vivo, age, BMI and gender. All implants were cobalt chrome, posterior stabilized, cemented components with fixed
Aim. The aim of the study was to assess the impact of a self aligning unidirectional mobile tibial bearing and the use of a patella button on lateral patella release rates within a knee system using a common femoral component for both the fixed and mobile variants. Methods and results. A total of 347 patients undergoing TKR were included in the study and randomly allocated to receive either a Mobile Bearing (171 knees) or a Fixed Bearing (176 knees) PS PFC Sigma TKR. Further sub-randomisation into patella resurfacing or retention was performed for both designs. The need for lateral patella release was assessed during surgery using the ‘no thumbs’ technique. The lateral release rate was similar for fixed bearing (9.65%) and mobile bearing (9.94%) implants (p=0.963). Patella resurfacing resulted in lower lateral release rates when compared to patella retention (5.8% vs 13.8%; p=0.0131). This difference was most marked in the mobile bearing group where the lateral release rate was 16.3% with patella retention compared to 3.5% with patella resurfacing (p=0.005). Conclusion. The addition of a rotating platform tibial component had no impact on the lateral release rate in this study. Optimising patella geometry by patella resurfacing appears more important than tibial bearing deisgn per se. The combination of a mobile
Background. Previous in vivo fluoroscopic studies have documented that subjects having a PS TKA experience a more posterior condylar contact position at full extension, a high incidence of reverse axial rotation and mid flexion instability. More recently, a PS TKA was designed with a Gradually Reducing Radius (Gradius) curved condylar geometry to offer patients greater mid flexion stability while reducing the incidence of reverse axial rotation and maintaining posterior condylar rollback. Therefore, the objective of this study was to assess the in vivo kinematics for subjects implanted with a Gradius curved condylar geometry to determine if these subjects experience an advantage over previously designed TKA. Methods. In vivo kinematics for 30 clinically successful patients all having a Gradius designed PS fixed bearing TKA with a symmetric tibia were assessed using mobile fluoroscopy. All of the subjects were scored to be clinically successful. In vivo kinematics were determined using a 3D-2D registration during three weight-bearing activities: deep-knee-bend (DKB), gait, and ramp down (RD). Flexion measurements were recorded using a digital goniometer while ground reaction forces were collected using a force plate as well. The subjects then assessed for range of motion, condyle translation and axial rotation and ground reaction forces. Results. During a DKB, subjects implanted a Gradius designed, PS fixed
Background. Several studies have reported that tibial component in varus alignment can worsen the survivorship of medial unicompartmental knee arthroplasty (UKA). On the other hand, Varus/valgus inclination of the tibial component can affect the location of the contact point between femoral and tibial component especially in round on flat
INTRODUCTION. Highly cross-linked polyethylene (XLPE) inserts have shown significant improvements in decreasing wear and osteolysis in total hip arthroplasty [1]. In contrast to that, XLPE has not shown to reduce wear or aseptic loosening in total knee arthroplasty [2,3,4]. One major limitation is that current wear testing in vitro is mainly focused on abrasive-adhesive wear due to level walking test conditions and does not reflect “delamination” as an essential clinical failure mode [5,6]. The objective of our study was to use a highly demanding daily activities wear simulation to evaluate the delamination risk of polyethylene materials with and without vitamin E stabilisation. MATERIALS & METHODS. A cruciate retaining fixed
Background. Wear and fatigue damage to polyethylene components remain major factors leading to complications after total knee and unicompartmental arthroplasty. A number of wear simulations have been reported using mechanical test equipment as well as computer models. Computational models of knee wear have generally not replicated experimental wear under diverse conditions. This is partly because of the complexity of quantifying the effect of cross-shear at the articular interface and partly because the results of pin-on-disk experiments cannot be extrapolated to total knee arthroplasty wear. Our premise is that diverse experimental knee wear simulation studies are needed to generate validated computational models. We combined five experimental wear simulation studies to develop and validate a finite-element model that accurately predicted polyethylene wear in high and low crosslinked polyethylene, mobile and fixed bearing, and unicompartmental (UKA) and tricompartmental knee arthroplasty (TKA). Methods. Low crosslinked polyethylene (PE). A finite element analysis (FEA) of two different experimental wear simulations involving TKA components of low crosslinked polyethylene inserts, with two different loading patterns and knee kinematics conducted in an AMTI knee wear simulator: a low intensity and a high intensity. Wear coefficients incorporating contact pressure, sliding distance, and cross-shear were generated by inverse FEA using the experimentally measured volume of wear loss as the target outcome measure. The FE models and wear coefficients were validated by predicting wear in a mobile