Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 80 - 80
7 Aug 2023
Liu A Qian K Dorzi R Alabdullah M Anand S Maher N Kingsbury S Conaghan P Xie S
Full Access

Abstract. Introduction. Knee braces are limited to providing passive support. There is currently no brace available providing both continuous monitoring and active robot-assisted movements of the knee joint. This project aimed to develop a wearable intelligent motorised robotic knee brace to support and monitor rehabilitation for a range of knee conditions including post-surgical rehabilitation. This brace can be used at home providing ambulatory continuous passive movement obviating the need for hospital admissions. Methodology. A wearable sensing system monitoring knee range of motion was developed to provide remote feedback to clinicians and real-time guidance for patients. A prototype of an exoskeleton providing dynamic motion assistance was developed to help patients complete their exercise goals and strengthen their muscles. The accuracy and reliability of those functions were validated in human participants during exercises including knee flexion/extension (FE) in bed and in chair, sit-to-stand and stand-to-sit. Results. The knee FE measurement from the sensing system showed high accuracy (correlation coefficient of 0.99°) in human participants. The real-time FE data during exercises showed that the desired exoskeleton rotation fitted well with the participant's knee rotation. This indicated the exoskeleton could coordinate with the participant's knee motion by providing consistent motion assistance. The development of user interfaces to provide feedback is currently underway. Conclusion. A wearable robotic knee brace to monitor and support knee rehabilitation exercises was successfully developed. Further development of this device with the use of artificial intelligence has the potential to aid patient rehabilitation in a variety of knee conditions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 31 - 31
1 Oct 2020
Jayakumar P Furlough K Uhler L Grogan-Moore M Gliklich R Rathouz P Bozic KJ
Full Access

Introduction. The application of artificial intelligence (A.I) using patient reported outcomes (PROs) to predict benefits, risks, benefits and likelihood of improvement following surgery presents a new frontier in shared decision-making. The purpose of this study was to assess the impact of an A.I-enabled decision aid versus patient education alone on decision quality in patients with knee OA considering total knee replacement (TKR). Secondarily we assess impact on shared decision-making, patient satisfaction, functional outcomes, consultation time, TKR rates and treatment concordance. Methods. We performed a randomized controlled trial involving 130 new adult patients with OA-related knee pain. Patients were randomized to receive the decision aid (intervention group, n=65) or educational material only (control group, n=65) along with usual care. Both cohorts completed patient surveys including PROs at baseline and between 6–12 weeks following initial evaluation or TKR. Statistical analysis included linear mixed effect models, Mann-Whitney U tests to assess for differences between groups and Fisher's exact test to evaluate variations in surgical rates and treatment concordance. Results. The intervention group showed greater decision quality (K-DQI, Mean difference = 20%, p<0.0001), collaboration in decision-making (CollaboRATE, 12% (intervention group), 47% (control group) below median, p<0.0001), satisfaction with consultations (NRS-C, 14% (intervention group), 33% (control group) below median, p=0.008), improvement in functional outcomes from baseline up to 12 week follow-up (KOOSJR, 4.9 pts higher (intervention group), p=0.029) without significantly impacting consultation time. No differences were observed in TKR rates or treatment concordance. Conclusion. A.I-enabled decision aids incorporating PROs in predictive algorithms can improve decision quality, level of shared decision-making, satisfaction with patient-provider consultations, and functional outcomes, without extending consultation times. The combination of advanced predictive technologies and patient reported data to forecast surgical outcomes presents a paradigm shift in shared decision making and the delivery of high value care for patients with knee OA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 32 - 32
1 Oct 2019
Goswami K Parvizi J
Full Access

Introduction. Next generation sequencing (NGS) has been shown to facilitate detection of microbes in a clinical sample, particularly in the setting of culture-negative periprosthetic joint infection (PJI). However, it is unknown whether every microbial DNA signal detected by NGS is clinically relevant. This multi-institutional study was conceived to 1) identify species detected by NGS that may predict PJI, then 2) build a predictive model for PJI in a developmental cohort; and 3) validate the predictive utility of the model in a separate multi-institutional cohort. Methods. This multicenter investigation involving 15 academic institutions prospectively collected samples from 194 revision total knee arthroplasties (TKA) and 184 revision hip arthroplasties (THA) between 2017–2019. Patients undergoing reimplantation or spacer exchange procedures were excluded. Synovial fluid, deep tissue and swabs were obtained at the time of surgery and shipped to MicrogenDx (Lubbock, TX) for NGS analysis. Deep tissue specimens were also sent to the institutional labs for culture. All patients were classified per the 2018 Consensus definition of PJI. Microbial DNA analysis of community similarities (ANCOM) was used to identify 17 candidate bacterial species out of 294 (W-value >50) for differentiating infected vs. noninfected cases. Logistic Regression with LASSO model selection and random forest algorithms were then used to build a model for predicting PJI. For this analysis, ICM classification was the response variable (gold standard) and the species identified through ANCOM were the predictor variables. Recruited cases were randomly split in half, with one half designated as the training set, and the other half as the validation set. Using the training set, a model for PJI diagnosis was generated. The optimal resulting model was then tested for prediction ability with the validation set. The entire model-building procedure and validation was iterated 1000 times. From the model set, distributions of overall assignment rate, specificity, sensitivity, positive predictive value (PPV) and negative predicative value (NPV) were assessed. Results. The overall predictive accuracy achieved in the model was 75.9% (Figure 1). There was a high accuracy in true-negative and false-negative classification of patients using this predictive model (Figure 2), which has previously been a criticism of NGS interpretation and reporting. Specificity was 97.1%, PPV was 75.0%, and NPV was 76.2%. On comparison of the distribution of abundances between ICM-positive and ICM-negative patients, Staphylococcus aureus was the strongest contributor (F=0.99) to the predictive power of the model (Figure 3). In contrast, Cutibacterium acnes was less predictive (F=0.309) and noted to be abundant across both infected and noninfected revision TJA samples. Discussion. This study is the first to utilize predictive modeling algorithms on a large prospective multicenter database in order to transform analytic NGS data into a clinically relevant diagnostic signal. Our collaborative findings suggest the microbial DNA signal identified on NGS may be an independent useful adjunct for the diagnosis of PJI, as well as help identify causative organisms. Further work applying artificial intelligence tools will improve accuracy, predictive power and clinical utility of high-throughput sequencing technology. For figures, tables, or references, please contact authors directly


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims

To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults.

Methods

The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims

To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA.

Methods

Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 338 - 356
10 May 2023
Belt M Robben B Smolders JMH Schreurs BW Hannink G Smulders K

Aims

To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration.

Methods

We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1358 - 1366
2 Aug 2021
Wei C Quan T Wang KY Gu A Fassihi SC Kahlenberg CA Malahias M Liu J Thakkar S Gonzalez Della Valle A Sculco PK

Aims

This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA).

Methods

Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 543 - 553
1 Sep 2020
Bakirci E Tschan K May RD Ahmad SS Kleer B Gantenbein B

Aims

The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL.

Methods

The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).