Abstract
Abstract
Introduction
Knee braces are limited to providing passive support. There is currently no brace available providing both continuous monitoring and active robot-assisted movements of the knee joint. This project aimed to develop a wearable intelligent motorised robotic knee brace to support and monitor rehabilitation for a range of knee conditions including post-surgical rehabilitation. This brace can be used at home providing ambulatory continuous passive movement obviating the need for hospital admissions.
Methodology
A wearable sensing system monitoring knee range of motion was developed to provide remote feedback to clinicians and real-time guidance for patients. A prototype of an exoskeleton providing dynamic motion assistance was developed to help patients complete their exercise goals and strengthen their muscles. The accuracy and reliability of those functions were validated in human participants during exercises including knee flexion/extension (FE) in bed and in chair, sit-to-stand and stand-to-sit.
Results
The knee FE measurement from the sensing system showed high accuracy (correlation coefficient of 0.99°) in human participants. The real-time FE data during exercises showed that the desired exoskeleton rotation fitted well with the participant's knee rotation. This indicated the exoskeleton could coordinate with the participant's knee motion by providing consistent motion assistance. The development of user interfaces to provide feedback is currently underway.
Conclusion
A wearable robotic knee brace to monitor and support knee rehabilitation exercises was successfully developed. Further development of this device with the use of artificial intelligence has the potential to aid patient rehabilitation in a variety of knee conditions.