Prosthetic Joint Infection (PJI) is a devastating complication that can occur after total joint replacement surgery. With increasing
An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to
Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed
Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an
Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add
Introduction and Objective. The continued effectiveness of antibiotic loaded bone cements is threatened by antibiotic resistance. The common antiseptic, chlorhexidine (CHX), is a potential alternative to antibiotics in bone cements, but conventional salts are highly soluble, causing burst release and rapid decline to subinhibitory local CHX concentrations. Here, chlorhexidine triphosphate (CHX-TP), a low solubility CHX salt, is investigated as an alternative
Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and
Orthopedic Device-Related Infections (ODRIs) are a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current treatments, based on antibiotic administration, have proven to be ineffective. Consequently, there is a need for antibiotic-free alternatives.
Background. Antibiotic loaded bone cement spacers are used as an adjunct to treatment in 2-stage arthroplasty revisions. If release of the correct choice of
Total joint replacement (TJR), such as hip and knee replacement, is commonly used for the treatment of end stage arthritis. The use of Poly (methylmethacrylate) bone cement is a gold standard in such replacement, where it fixes the implant in place and transfer stresses between bone and implant, and frequently used for local delivery of drugs such as antibiotics. The use of antibiotic loaded bone cement is considered a well-established standard in the treatment and prophylaxis of Prosthetic joint infections (PJI). PJIs is a serious problem that decreases success rate of surgery and can be life threatening to patients, where the incidence can reach up 2% in total and hip replacements and up to 40% for revision surgery. Currently used antibiotic loaded bone cements have many limitations, including burst release of < 10% of antibiotic added. This burst release falls rapidly below inhibitory level within few days, which leads to selection of resistant
Abstract. OBJECTIVES. Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of
Thermostability is a key property in determining the suitability of local delivery of antibiotics in the treatment of orthopaedic infections. Herein, we aimed to assess the thermal stability and antibacterial activity of ciprofloxacin, ceftriaxone, gentamycine and vancomycine in high temperature conditions. Using a standardized E-test method, minimally inhibited concentration of each antibiotic substance against Staphylococcus aureus cultures were determined. The solutions of
Post-surgical infections are still one of the most frequent adverse events in the prosthetic surgery. PMMA-based cements are widely employed in orthopaedic surgery as filler or prosthetic fixing device. The main problems associated with this material are poor bone integration and infection development. Aiming to avoid bacterial adhesion and to extend the longevity of implants, different solutions were proposed, both in terms of operative procedures and new materials development. Regarding the materials advancement, innovative PMMA-based composite bone cements, contemporaneously bioactive and antibacterial (without the use of antibiotics), were developed. The composites are based on a PMMA matrix containing a bioactive glass, doped with antibacterial ions (Ag+ or Cu++); so, the same filler shows at the same time the ability of promoting bone ingrowth and an antibacterial effect. Composite cements were characterized in terms of morphology and composition, curing parameters and mechanical properties; in vitro tests were performed to verify the material ability to release antibacterial ions and to promote the precipitation of hydroxyapatite. Moreover, cytotoxicity and
Orthopedic device-related bone infection is one of the most distressing complications of the surgical fixation of fractures. Despite best practice in medical and surgical interventions, the rate of infection remains stubbornly persistent, and current estimates indicate that treatment failure rates are also significant. As we approach the limit of the effectiveness of current anti-infective preventative and therapeutic strategies, novel approaches to infection management assume great importance. This presentation will describe our efforts to develop and test various hydrogels to serve as customized antibiotic delivery vehicles for infection prevention and treatment. Hydrogels offer solutions for many of the challenges faced by complex trauma wounds as they are not restricted spatially within a poorly defined surgical field, they often degrade rapidly with no compatibility issues, and releases 100% of the loaded antibiotic. The preliminary data set proving efficacy in preventing and treating infection in both rabbit and sheep studies will be described, including local antibiotic concentrations in the intramedullary canal over time, compared to that of the more conventional antibiotic loaded bone cement. These two technologies show potential for the prevention and treatment of infection in trauma patients, with a clear focus on optimized antibiotic delivery tailored for complex wounds.
Musculoskeletal disorders is one of most important health problems human population is facing includes. Approximately 310 thousand of hip protheses have been used in 45 years and older patients in total according to the recent studies have been done. [1, 2]. Many factors, including poor osseointegration or relaxation of the implant due to stress, limit the life of the load-bearing implants [3]. To overcome these difficulties and to protect metal implants inside the body, the surfaces of the implants were coated with silver ion doped hydroxyapatite/bioglass. In this study, silver doped hydroxyapatite ceramic powder and 6P57 bioglass were synthesized. Two different coating suspensions, 100% bioglass and 70% Ag-HAp / 30% bioglass, were prepared in methyl alcohol with a solid content of 1% by weight. Two layers were coated on the external fixator nails by using electrospray method with the bioglass and Ag-Hap/Bioglass suspensions respectively. The coated implants were cut with an equal surface area and kept in human blood plasma for different time. The scanning electron microscopy (SEM, Zeiss Supra 50VP and Zeiss Evo 50EP) and stereo microscope (Zeiss Axiocam Stemi 2000-C) were used to characterize microstructure and thickness of coated surface. Energy dispersive X-ray Spectroscopy was used characterized of chemical composition of coating. Changing of pH value of plasma was measured by pH meter (Hanna HI83414). In addition, the ICP method was used to determine the elements contained in the plasma fluid after dissolution. As a result of this study, physical and chemical changes occurring on the coating surface in different time periods are presented in detail
Antibiotic-laden bone cement is an important strategy of treatment for an established bone infection. It was aimed to find the safe antibiotic dose intervals of the antibiotic cements soaked in Phosphate Buffered Saline solution and to determine whether there was a difference in terms of mechanical strength between the prepared samples. This study was done in our institute Microbiology and Metallurgy laboratories. All samples were prepared using manual mixing technique using 40 g radiopaque Biomet® Bone cement (Zimmer Biomet, Indiana, USA) under sterile conditions at 19 ± 2 ºC. In this study, vancomycin (4 groups − 0.5, 2, 4, 6 g), teicoplanin (4 groups − 0.8, 1.2, 2, 2.4 g), daptomycin (4 groups − 1, 2, 2.5, 3 g), piperacillin-tazobactam (4 groups − 0.125, 0.5, 1, 2 g) and meropenem (4 groups − 0.5, 2, 4, 6 g) were measured in a assay balance and added to the cement powder. Antibiotic levels ranged from the lowest 0.625% to the highest 15%. 80×10×4 mm rectangle prism-shaped sample for mechanical measurements in accordance to ISO 5833 standart and 12×6×1 mm disc-shaped samples for microbiological assesments were used. Four sample for each antibiotic dose and control group was made. Prepared samples were evaluated macroscopically and faulty samples were excluded from the study. Prepared samples were kept in Phosphate Buffered Saline solution renewed every 24 hours at 37 ºC. At the end of 6 weeks, all samples were tested with Instron ® 3369 (Norwood Massachusetts, USA) four point bending test. Staphylococcus aureus (ATCC 29213) strain was used for samples of antibiotics containing vancomycin, teicoplanin and daptomycin after the samples prepared for antibiotic release were maintained under sterile conditions and kept in Phosphate Buffered Saline solution as appropriate. For samples containing meropenem and piperacillin - tazobactam antibiotics, Pseudomonas aeruginosa (ATCC 27853) strain was used. The addition of more than 5% antibiotics to the cement powder was significantly reduced mechanical strength in all groups(p <0.05) however the power of significance was changed depending on the type of antibiotic. In general, adding antibiotics with 2.5% and less for cement amount was not cause significant changes in mechanical measurements. There was a negative correlation between the increase in the amount of antibiotics mixed with cement and the durability of the cement (p: <0.001, r: −0.883 to 0.914). In this study, especially the antibacterial effects of piperacillin-tazobactam, containing 0.25 gr and 0.5 gr antibiotic doses, were found to be low. There was no bacterial growth in all other groups for 21 days. Considering the mechanical properties of groups containing meropenem, vancomycin, daptomycin and teicoplanin, it was observed that all antibiotic cements remained above the limit value of 50 MPa in the bending test at concentrations containing 2.5% and less antibiotics. This was not achieved for the piperacillin-tazobactam group. The findings of the study showed that each antibiotic has different MPa values at different doses. Therefore, it could be concluded that not only the antibiotic dose but also the type oould change the mechanical properties. In the light of these findings, mixing more than 2.5% antibiotics in cement for the antibiotic types included in the study was ineffective in terms of antibacterial effect and mechanically reduces the durability of cement below the standard value of 50 MPa.
We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p <
0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model.
Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive. We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples.
Innovative nanocomposite carbon coating doped with Si can significantly improve the osseintegration of orthopaedics implants. Additionally, this kind of coating increases the mechanical resistance of the implants, what is especially important on case of joints (frictional pairs). Use of layers of carbon-doped silicon, which leads to the synthesis of layers improving mechanical and biological characteristics, let obtain good strength by volume features. Suitable introduction to the structure of amorphous silicon dioxide layer allow for the production of higher adhesion to metallic substrates and consequently the increased thickness and hardness. The increased thickness of the layer leads to a stronger diffusion barrier to harmful metal ions from the implant material and thus consequently improving the biocompatibility of the implant. Moreover, a silicon beneficial effect on stress relaxation layer formed during the synthesis. This allows for improved biocompatibility, also affects other property obtained in the case of silicon carbide layers, the bacteriastability. This further protects the surface of the implant against the risk of bacterial colonization in both the implantation and subsequent use in the body, and preferably suppressing inflammation and faster healing of surgical wounds. The thus obtained product is much better than the biological and mechanical parameters of currently offered.Summary Statement
Introduction
Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with