Aim. Quantitative assessment of
Aim.
Aim. A key of success in the treatment of prosthetic joint infection (PJI) is the proper diagnosis. There is a lack of diagnostic tools able to diagnose a PJI with high accuracy.
Prosthetic joint infection continues to remain a diagnostic challenge for unhappy primary arthroplasty of hip and knees. There is increasing dependence upon
Aim.
Purpose. Unexpected-positive-intraoperative-cultures (UPIC) in presumed aseptic revision-total-knee-arthroplasties (rTKA) are common, and the clinical significance is not entirely clear. In contrast, in some presumably septic rTKA, an identification of an underlying pathogen was not possible, so called unexpected-negative-intraoperative-cultures (UNIC). The purpose of this study was to evaluate alpha defensin (AD) levels in these patient populations. Methods. In this retrospective analysis of our prospectively maintained biobank, we evaluated synovial AD levels from 143 rTKAs. The 2018-Musculoskeletal Infection Society score (MSIS) was used to define our study groups. Overall, 20 rTKA with UPIC with a minimum of one positive intraoperative culture with MSIS 2-≥6 and 14 UNIC samples with MSIS≥6 were compared to 34 septic culture-positive samples (MSIS ≥6) and 75 aseptic culture-negative (MSIS 0–1) rTKAs. Moreover, we compared the performance of both AD-lateral-flow-assay (ADLF) and an enzyme-linked-immunosorbent-assay (ELISA) to test the presence of AD in native and centrifuged synovial fluid. Concentration of AD determined by ELISA and ADLF methods, as well as microbiological, and histopathological results, serum and synovial parameters along with demographic factors were considered. Results. AD was detected in 31/34 (91.2%) samples from the infected-group and in 14/14 (100%) samples in the UNIC group. All UPIC samples showed a negative AD result. Positive AD samples were highly (p<0.001) associated with culture positive and infection related histopathological results. Moreover, we found significantly (p=0.001) more high-virulent microorganisms 19/34 (55.9%) in the infected-group compared to the UPIC-group (0/20). Samples from the infected group with high virulent microorganisms 17/19 (89.5%) showed a positive AD. The presence of methicillin resistant Staphylococcus epidermis (MRSE) led to increased AD (p=0.003) levels when compared to those determined in samples positive for methicillin susceptible S. epidermdis (MSSE). ELISA and ADLF tests were positive with centrifuged (8/8) and native (8/8) synovial fluid. Conclusion. AD showed a solid diagnostic performance in infected and non-infected revisions, and it provided an additional value in the diagnostic of UPIC and UNIC associated to rTKAs. AD levels produced by patients with PJIs caused by high-virulent microorganisms and MRSE are significantly higher compared to those in patients with PJIs caused by either low-virulent or antibiotic susceptible microorganisms. Centrifugation of synovial fluid had no influence in the outcome of ADLF quantification. Keywords:
The aim of the study was to assess the accuracy of the alpha defensin lateral flow test for diagnosis of periprosthetic joint infection (PJI) using an optimized diagnostic algorithm and three classification systems. In addition, we compared the performance with synovial fluid leukocyte count, the most sensitive preoperative test. In this prospective multicenter study we included all consecutive patients with painful prosthetic hip and knee joints undergoing diagnostic joint aspiration. Alpha defensin lateral flow test was used according to manufacturer instructions. The following diagnostic criteria were used to confirm infection: Musculoskeletal Infection Society (MSIS), Infectious Diseases Society of America (IDSA) and Swiss orthopedics and Swiss Society of Infectious Diseases (SOSSID). In the latter, PJI was confirmed when at least one of following criteria applied: macroscopic purulence, sinus tract, positive cytology of joint aspirate (>2000 leukocytes/μl or >70% granulocytes), histological proof of acute inflammation in periprosthetic tissue, positive culture (from aspirate, tissue or sonication fluid). Infection was classified as chronic, if symptom duration was more than 3 weeks or if infection manifested after more than 1 month after surgery. The sensitivity and specificity of the alpha defensin lateral flow test and leukocyte count in synovial fluid were calculated and compared using McNemar Chi-square test.Aim
Method
Background. The diagnosis of periprosthetic joint infection (PJI) remains a challenge in clinical practice and the analysis of synovial fluid (SF) is a useful diagnostic tool. Recently, two synovial biomarkers (leukocyte esterase (LE) strip test,
Introduction. Periprosthetic joint infection (PJI) is considered one of the most feared causes of implant failure, due to the difficulty in formulating a proper and timely diagnosis. In the diagnostic workup are often used test with a low specificity, such as the dosage of ESR and CRP, or sensitivity, such as cultures or the leukocyte count of the synovial fluid. Radiological investigations are expensive and unreliable to play a direct role in the diagnosis of PJI. The
While advances in laboratory and imaging modalities facilitate the diagnosis of periprosthetic joint infection (PJI), clinical suspicion and a thorough history and physical remain the basis of evaluation. If clinical suspicion is high, the evaluation should be more vigorous, and vice versa. The erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are inexpensive as well as ubiquitous, and should be obtained as a preliminary screening tool. These tests have been found to be cost-effective and highly sensitive. If both tests are negative, there is a low risk of periprosthetic joint infection (i.e., good negative predictive value). Positive results on both tests, in contrast, are not as specific but again raise suspicion. When either the ESR or CRP is elevated, or if the clinical suspicion for infection is high, aspiration of the knee joint is suggested. Synovial fluid should be sent for a synovial fluid white blood cell count (WBC), differential and culture. Given the ability to get three data points from one intervention, arthrocentesis, is the best single maneuver the physician can perform to rule in or out PJI. The synovial fluid WBC count has demonstrated in multiple studies excellent specificity and sensitivity in the diagnosis of infection. Based on multiple recent studies, the proceedings of the International Consensus on PJI recommend cut-offs for the synovial fluid WBC count as >3000 cells/mL and > 80% neutrophils for the differential. Synovial fluid biomarkers represent an expanding area of clinical interests based on the unique cascade of gene expression that occurs in white blood cells in response to pathogens. Deirmegian et al. described the unique gene expression and biomarker production by neutrophils in response to bacteria that are detectable in synovial fluid. Specifically,
Total joint arthroplasty continues to gain acceptance as the standard of care for the treatment of severe degenerative joint disease. However, the Periprosthetic Joint Infection (PJI) remains one of the biggest challenges facing orthopaedics today. It is important to accurately diagnose PJI because its management differs from that of other causes of arthroplasty failure. The most common symptom of PJI is pain. In acute infection, the local signs and symptoms (e.g., severe pain, swelling, erythema, and warmth at the infected joint) of inflammation are generally present. On the other hand, chronic infection usually has a more subtle presentation, with pain alone, and is often accompanied by loosening of the prosthesis at the bone-implant interface. The diagnosis of PJI has proven quite challenging, as both acute and chronic infections can be difficult to differentiate from other forms of inflammation. The reported literature on the diagnosis of PJI has focused on evaluated laboratory tests that were never developed specifically for the diagnosis of PJI. Because these tests were not made for the purpose of diagnosing PJI, it has been the responsibility of the orthopaedic community to evaluate and recommend their interpretation. This has resulted in significant confusion regarding the appropriate thresholds and optimal combination of these tests. These difficulties were the motivation for the development of a specific test for the detection of PJI. The promising diagnostic capabilities of synovial fluid biomarkers for PJI have already been reported in the literature. Studies have demonstrated that the
INTRODUCTION. Total joint arthroplasty continues to gain acceptance as the standard of care for the treatment of severe degenerative joint disease, and is considered one of the most successful surgical interventions in the history of medicine. However, infection of these implants, called Periprosthetic Joint Infection (PJI), remains one of the biggest challenges facing orthopaedics today. PJI can lead to additional surgeries, revision, fusion and amputation. Diagnosis of PJI. It is important to accurately diagnose PJI because its management differs from that of other causes of arthroplasty failure. In acute infection, the local signs and symptoms (e.g., severe pain, swelling, erythema, and warmth at the infected joint) of inflammation are generally present. On the other hand, chronic infection usually has a more subtle presentation, with pain alone, and is often accompanied by loosening of the prosthesis at the bone-implant interface. The diagnosis of PJI has proven quite challenging, as both acute and chronic infections can be difficult to differentiate from other forms of inflammation. The reported literature on the diagnosis of PJI has focused on evaluated laboratory tests that were never developed specifically for the diagnosis of PJI. These include the erythrocyte sedimentation rate (ESR), the serum C-reactive protein (CRP), the synovial fluid white blood cell count and the leukocyte differential. Because these tests were not made for the purpose of diagnosing PJI, it has been the responsibility of the orthopaedic community to evaluate and recommend their interpretation. This has resulted in significant confusion regarding the appropriate thresholds and optimal combination of these tests. These difficulties were the motivation for the development of a specific test for the detection of PJI. The Synovasure® Test for Periprosthetic Joint Infection (PJI). The promising diagnostic capabilities of synovial fluid biomarkers for PJI have already been reported in the literature. These biomarkers include inflammatory proteins, cytokines, and microbicidal peptides / proteins that are known to be involved in the host response to infection. Studies have demonstrated that the
Introduction. In revision surgery, detection of periprosthetic joint infection is of prime importance. Valuable preoperative and intraoperative diagnostic tests and tools are necessary. The classical standard procedures are puncture and bacteriology examination, frozen section intraoperative and powerfield micro analysis. Since autumn 2014 a new device for detection of periprosthetic joint infection is available, named Synovasure. It is a fast test for the detection of Alpha defensing, which plays a major role in the antimicrobial defence and only occurs in inflammatory processes. „The
Aim. Apart from other biomarkers isolated in the synovial fluid,
In years past, the most common reason for revision following knee replacement was polyethylene wear. A more recent study indicates that polyethylene wear is relatively uncommon as a cause for total knee revision counting for only 10% or fewer of revisions. The most common reason for revision currently is aseptic loosening followed closely by instability and infection. The time to revision was surprisingly short. In a recent series only 30% of knees were greater than 5 years from surgery at the time of revision. The most common time interval was less than 2 years. This is likely because of the higher incidence of infection and instability that occurs most commonly at a relatively early time frame. Evaluation of a painful total knee should take into account these findings. All total knees that are painful within 5 years of surgery should be assumed to be infected until proven otherwise. Therefore, virtually all should be aspirated for cell count, differential, and culture.
Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.Aims
Methods
Metal Ion Levels Not Useful in Failed M-O-M Hips: Systematic Review; Revision of Failed M-O-M THA at a Tertiary Center; Trunnionosis in Metal-on-Poly THA?; Do Ceramic Heads Eliminate Trunnionosis?; Iliopsoas Impingement After 10 THA; Pain in Young, Active Patients Following THA; Pre-operative Injections Increase Peri-prosthetic THA Infection; Debridement and Implant Retention in THA Infection; THA after Prior Lumbar Spinal Fusion; Lumbar Back Surgery Prior to THA Associated with Worse Outcomes; Raising the Joint Line Causes Mid-Flexion Instability in TKA; No Improvement in Outcomes with Kinematic Alignment in TKA; Botox For TKA Flexion Contracture; Intra-operative Synovitis Predicts Worse Outcomes After TKA for OA; When is it Safe for Patients to Drive After Right TKA?;
Effectiveness of Liposomal Bupivacaine for Post-Operative Pain Control in Total Knee Arthroplasty: A Prospective, Randomised, Double Blind, Controlled Study. Pericapsular Injection with Free Ropivacaine Provides Equivalent Post-Operative Analgesia as Liposomal Bupivacaine following Unicompartmental Knee Arthroplasty. Total Knee Arthroplasty in the 21st Century: Why Do They Fail? A Fifteen-Year Analysis of 11,135 Knees. Cryoneurolysis for Temporary Relief of Pain in Knee Osteoarthritis: A Multi-Center, Prospective, Double-Blind, Randomised, Controlled Trial. Pre-Operative Freezing of Sensory Nerves for Post-TKA Pain: Preliminary Results from a Prospective, Randomised, Double-Blind Controlled Trial. Proximalization of the Tibial Tubercle Osteotomy: A Solution for Patella Infera during Revision Total Knee Arthroplasty. Treatment of Periprosthetic Joint Infection Based on Species of Infecting Organism: A Decision Analysis.