Aims. The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New biomarkers have been proposed to support clinical decision-making; among them, synovial fluid
Aims. To establish the utility of adding the laboratory-based synovial
Aims. The aim of this study was to evaluate the diagnostic accuracy of the synovial
Aims. The purpose of this current multicentre study is to analyse the
presence of
Aims. The aim of this review was to evaluate the available literature
and to calculate the pooled sensitivity and specificity for the
different
Background. Two-stage revision arthroplasty is the standard treatment for chronic hip and knee periprosthetic joint infections (PJI). Accurate diagnosis of persistent infections at 2nd stage using established biomarkers and diagnostic criteria is of paramount importance. This study aimed to evaluate the diagnostic value of synovial calprotectin and
Aim. Quantitative assessment of
Aim.
Aim. A key of success in the treatment of prosthetic joint infection (PJI) is the proper diagnosis. There is a lack of diagnostic tools able to diagnose a PJI with high accuracy.
Introduction. Periprosthetic joint infection (PJI) can be difficult to diagnose. A variety of techniques have been described. The efficacy of the
Prosthetic joint infection continues to remain a diagnostic challenge for unhappy primary arthroplasty of hip and knees. There is increasing dependence upon
Aim.
Purpose. Unexpected-positive-intraoperative-cultures (UPIC) in presumed aseptic revision-total-knee-arthroplasties (rTKA) are common, and the clinical significance is not entirely clear. In contrast, in some presumably septic rTKA, an identification of an underlying pathogen was not possible, so called unexpected-negative-intraoperative-cultures (UNIC). The purpose of this study was to evaluate alpha defensin (AD) levels in these patient populations. Methods. In this retrospective analysis of our prospectively maintained biobank, we evaluated synovial AD levels from 143 rTKAs. The 2018-Musculoskeletal Infection Society score (MSIS) was used to define our study groups. Overall, 20 rTKA with UPIC with a minimum of one positive intraoperative culture with MSIS 2-≥6 and 14 UNIC samples with MSIS≥6 were compared to 34 septic culture-positive samples (MSIS ≥6) and 75 aseptic culture-negative (MSIS 0–1) rTKAs. Moreover, we compared the performance of both AD-lateral-flow-assay (ADLF) and an enzyme-linked-immunosorbent-assay (ELISA) to test the presence of AD in native and centrifuged synovial fluid. Concentration of AD determined by ELISA and ADLF methods, as well as microbiological, and histopathological results, serum and synovial parameters along with demographic factors were considered. Results. AD was detected in 31/34 (91.2%) samples from the infected-group and in 14/14 (100%) samples in the UNIC group. All UPIC samples showed a negative AD result. Positive AD samples were highly (p<0.001) associated with culture positive and infection related histopathological results. Moreover, we found significantly (p=0.001) more high-virulent microorganisms 19/34 (55.9%) in the infected-group compared to the UPIC-group (0/20). Samples from the infected group with high virulent microorganisms 17/19 (89.5%) showed a positive AD. The presence of methicillin resistant Staphylococcus epidermis (MRSE) led to increased AD (p=0.003) levels when compared to those determined in samples positive for methicillin susceptible S. epidermdis (MSSE). ELISA and ADLF tests were positive with centrifuged (8/8) and native (8/8) synovial fluid. Conclusion. AD showed a solid diagnostic performance in infected and non-infected revisions, and it provided an additional value in the diagnostic of UPIC and UNIC associated to rTKAs. AD levels produced by patients with PJIs caused by high-virulent microorganisms and MRSE are significantly higher compared to those in patients with PJIs caused by either low-virulent or antibiotic susceptible microorganisms. Centrifugation of synovial fluid had no influence in the outcome of ADLF quantification. Keywords:
The aim of the study was to assess the accuracy of the alpha defensin lateral flow test for diagnosis of periprosthetic joint infection (PJI) using an optimized diagnostic algorithm and three classification systems. In addition, we compared the performance with synovial fluid leukocyte count, the most sensitive preoperative test. In this prospective multicenter study we included all consecutive patients with painful prosthetic hip and knee joints undergoing diagnostic joint aspiration. Alpha defensin lateral flow test was used according to manufacturer instructions. The following diagnostic criteria were used to confirm infection: Musculoskeletal Infection Society (MSIS), Infectious Diseases Society of America (IDSA) and Swiss orthopedics and Swiss Society of Infectious Diseases (SOSSID). In the latter, PJI was confirmed when at least one of following criteria applied: macroscopic purulence, sinus tract, positive cytology of joint aspirate (>2000 leukocytes/μl or >70% granulocytes), histological proof of acute inflammation in periprosthetic tissue, positive culture (from aspirate, tissue or sonication fluid). Infection was classified as chronic, if symptom duration was more than 3 weeks or if infection manifested after more than 1 month after surgery. The sensitivity and specificity of the alpha defensin lateral flow test and leukocyte count in synovial fluid were calculated and compared using McNemar Chi-square test.Aim
Method
Aims. The diagnosis of periprosthetic joint infection (PJI) remains a challenge, as no single diagnostic test shows high diagnostic accuracy. Recently, the measurement of synovial biomarkers has shown promising results. The aim of this study was to present a novel multiplex micro-enzyme-linked immunosorbent assay (ELISA) method for the rapid and simultaneous measurement of
Aims. The aim of this study was to evaluate the diagnostic accuracy of the absolute synovial polymorphonuclear neutrophil cell (PMN) count for the diagnosis or exclusion of periprosthetic joint infection (PJI) after total hip (THA) or knee arthroplasty (TKA). Methods. In this retrospective cohort study, 147 consecutive patients with acute or chronic complaints following THA and TKA were included. Diagnosis of PJI was established based on the 2018 International Consensus Meeting criteria. A total of 39 patients diagnosed with PJI (32 chronic and seven acute) and 108 patients with aseptic complications were surgically revised. Results. Using receiver operating characteristic curves and calculating the area under the curve (AUC), an optimal synovial cut-off value of 2,000 PMN/µl was determined (AUC 0.978 (95% confidence interval (CI) 0.946 to 1)). Using this cut-off, sensitivity and specificity of absolute synovial PMN count for PJI were 97.4% (95% CI 91.2 to 100) and 93.5% (95% CI 88.9 to 98.1), respectively. Positive and negative predictive value were 84.4% (95% CI 72.7 to 93.9) and 99.0% (95% CI 96.7 to 100), respectively. Exclusion of 20 patients with acute complications improved specificity to 97.9% (95% CI 94.6 to 100). Different cut-off values for THA (< 3,600 PMN/µl) and TKA (< 2,000 PMN/µl) were identified. Absolute synovial PMN count correlated strongly with synovial
Aims. The diagnosis of periprosthetic joint infection can be difficult
due to the high rate of culture-negative infections. The aim of
this study was to assess the use of next-generation sequencing for
detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples
of synovial fluid were obtained from patients undergoing aspiration
of the hip or knee as part of the investigation of a periprosthetic
infection. A panel of synovial fluid tests, including levels of
C-reactive protein, human neutrophil elastase, total neutrophil
count,
Background. The diagnosis of periprosthetic joint infection (PJI) remains a challenge in clinical practice and the analysis of synovial fluid (SF) is a useful diagnostic tool. Recently, two synovial biomarkers (leukocyte esterase (LE) strip test,
Introduction. Periprosthetic joint infection (PJI) is considered one of the most feared causes of implant failure, due to the difficulty in formulating a proper and timely diagnosis. In the diagnostic workup are often used test with a low specificity, such as the dosage of ESR and CRP, or sensitivity, such as cultures or the leukocyte count of the synovial fluid. Radiological investigations are expensive and unreliable to play a direct role in the diagnosis of PJI. The
While advances in laboratory and imaging modalities facilitate the diagnosis of periprosthetic joint infection (PJI), clinical suspicion and a thorough history and physical remain the basis of evaluation. If clinical suspicion is high, the evaluation should be more vigorous, and vice versa. The erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are inexpensive as well as ubiquitous, and should be obtained as a preliminary screening tool. These tests have been found to be cost-effective and highly sensitive. If both tests are negative, there is a low risk of periprosthetic joint infection (i.e., good negative predictive value). Positive results on both tests, in contrast, are not as specific but again raise suspicion. When either the ESR or CRP is elevated, or if the clinical suspicion for infection is high, aspiration of the knee joint is suggested. Synovial fluid should be sent for a synovial fluid white blood cell count (WBC), differential and culture. Given the ability to get three data points from one intervention, arthrocentesis, is the best single maneuver the physician can perform to rule in or out PJI. The synovial fluid WBC count has demonstrated in multiple studies excellent specificity and sensitivity in the diagnosis of infection. Based on multiple recent studies, the proceedings of the International Consensus on PJI recommend cut-offs for the synovial fluid WBC count as >3000 cells/mL and > 80% neutrophils for the differential. Synovial fluid biomarkers represent an expanding area of clinical interests based on the unique cascade of gene expression that occurs in white blood cells in response to pathogens. Deirmegian et al. described the unique gene expression and biomarker production by neutrophils in response to bacteria that are detectable in synovial fluid. Specifically,