Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Implant selection in TKA remains highly variable. Surgeons consider pre-operative deformity, patient factors such as BMI and bone quality, surgical experience, retention or substitution for the PCL, type of articulation and polyethylene, cost, and fixation with or without cement. We have most frequently implanted the same implant for the majority of patients. This is based on the fact that multiple large series of TKAs have demonstrated that the most durable TKAs have been non-modular metal-backed tibial components, retention of the PCL, with a cemented
Objectives. All Polyethylene Tibial components in Total Knee Arthroplasty have been in use for some years, studies showing equivalent results to Total Knee Arthroplasty (TKA) with metal-backed Tibial components at 10 years have shown no significant difference between the two on radiostereometric analysis and revision rates[1]. Post operative patient outcome data using standard metal-backed Tibial components is widely reported in the literature. This study is looking at patient outcomes following
Introduction. The precise indications for tibial component metal backing and modularity remain controversial in routine primary total knee arthroplasty. This is particularly true in elderly patients where the perceived benefits of metal backing such as load redistribution and the reduction of polyethylene strain may be clinically less relevant. The cost implications for choosing a metal-backed design over an
Purpose:. Glenoid loosening persists as a common cause of anatomic total shoulder arthroplasty (TSA) failure. Considering radiographic evidence of loosening as an endpoint, TSA has a reported survivorship of only 51.5% at 10 years. Component loosening may be related to cementation and it is postulated that poor cement penetration and heat-induced necrosis may partially be responsible. There is a growing interest among surgeons to minimize or abandon cement fixation and rely on biologic fixation to the polyethylene for long-term fixation. De Wilde et al. reported promising early clinical and radiographic results using a pegged,
Background and Purpose:. Modularity of the tibial component in total knee arthroplasties (TKA) has many surgical benefits. It also reduces inventory related expenses but increases implant cost. The resulting locking mechanism micromotion that leads to non-articular microwear and has been an accepted consequence of modularity. The purpose of this study is to evaluate the risk of revision (all-cause and aseptic) of a monoblock
We compared the rate of revision of two classes of primary anatomic shoulder arthroplasty, stemmed (aTSA) and stemless (sTSA) undertaken with cemented all polyethylene glenoid components. A large national arthroplasty registry identified two cohort groups for comparison, aTSA and sTSA between 1st January 2011 and 31st December 2020. A sub-analysis from 1 January 2017 captured additional patient demographics. The cumulative percentage revision (CPR) was determined using Kaplan-Meier estimates of survivorship and hazard ratios (HR) from Cox proportional hazard models adjusted for age and gender. Of the 7,533 aTSA procedures, the CPR at 8 years was 5.3% and for 2,567 sTSA procedures was 4.0%. There was no difference in the risk of revision between study groups (p=0.128). There was an increased risk of revision for aTSA and sTSA undertaken with humeral head sizes <44mm (p=0.006 and p=0.002 respectively). Low mean surgeon volume (MSV) (<10 cases per annum) was a revision risk for aTSA (p=0.033) but not sTSA (p=0.926). For primary diagnosis osteoarthritis since 2017, low MSV was associated with an increased revision risk for aTSA vs sTSA in the first year (p=0.048). Conversely, low MSV was associated with a decreased revision risk for sTSA in the first 6 months (p<0.001). Predominantly aTSA was revised for loosening (28.8%) and sTSA for instability/dislocation (40.6%). Revision risk of aTSA and sTSA was associated with humeral head size and mean surgeon volume but not patient characteristics. Inexperienced shoulder arthroplasty surgeons experience lower early revision rates with sTSA in the setting of osteoarthritis. Revision of aTSA and sTSA occurred for differing reasons.
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently there is a paucity of information examining the survival and outcomes of
We report the outcome of 320 primary Total Hip Arthroplasties (THA) with minimum 10-year follow-up (range 10–17 years, mean 12.6 years), performed by a single surgeon in Tauranga New Zealand, with the Exeter Contemporary Flanged
Metal-backed tibial components in total knee arthroplasty (TKA) currently dominate the orthopaedic market due to intra-operative flexibility afforded by modularity. Metal-backing was first used in TKA as a method to potentially improve loading distributions over the tibial plateau at the interface between the prosthesis and the supporting cancellous bone. Many studies have compared metal-backed and
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 modular fixed-bearing, 4 metal-backed nonmodular fixed-bearing, 8 resurfacing onlay, 10
While the vast majority of total knee replacements performed throughout the world employ a modular metal-backed tibial tray, and not an
There is no question that excellent long-term results have been demonstrated with
There is no question that excellent long-term results have been demonstrated with
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were
A) Mastering the Art of Cemented Femoral Stem Fixation. Introduction: Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60–80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multifactorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30–150 microinches. Results: Since 1978, three series of cemented THA have been prospectively followed using periodic clinical and radiographic evaluations. All procedures were performed by the author using the posterior approach. Excellent results were noted and Kaplan-Meier survivorship ranged from 90% to 99.5% in the best case scenario at 10–20 year follow-up. Conclusion: With a properly-designed femoral stem, good cement technique, proper cement mantle, and surface roughness of 30–40 microinches, the cemented femoral stem provides a durable hip replacement in patients 60 to 80 years of age with up to 95% survivorship at 10 to 20 years. B) Cemented Primary Acetabulum. Introduction: I am going to present a technique of cementing an
Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were
Total knee replacement is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKA have changed, with ever younger, more active and heavier patients receiving TKA. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKA implants of all designs. Initially, tibial components were cemented