Advertisement for orthosearch.org.uk
Results 1 - 20 of 1130
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2021
De Grave PW Luyckx T Claeys K Gunst P
Full Access

Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable linear regression analyses were performed to determine associations of OKS and satisfaction with 6 variables (age, sex, body mass index (BMI), preoperative hip knee ankle (HKA) angle, preoperative OKS, alignment technique). Results. The iKA and aMA techniques yielded comparable outcome scores (p=0.069), with OKS respectively 44.6±3.5 and 42.2±6.3. VAS Satisfaction was better (p=0.012) with iKA (9.2±0.8) compared to aMA (8.5±1.3). The number of patients that achieved OKS and satisfaction PASS thresholds was significantly higher (p=0.049 and p=0.003, respectively) using iKA (98% and 80%) compared to aMA (85% and 48%). Knees with preoperative varus deformity, achieved significantly (p=0.025) better OKS using iKA (45.4±2.0) compared to aMA (41.4±6.8). Multivariable analyses confirmed better OKS (β=3.1; p=0.007) and satisfaction (β=0.73; p=0.005) with iKA. Conclusions. The results of this study suggest that iKA and aMA grant comparable clinical outcomes at 12-months follow-up, though a greater proportion of knees operated by iKA achieved the PASS thresholds for OKS and satisfaction. Notably. in knees with preoperative varus deformity, iKA yielded significantly better OKS and satisfaction than aMA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 1 - 1
3 Mar 2023
Kinghorn AF Whatling G Bowd J Wilson C Holt C
Full Access

This study aimed to examine the effect of high tibial osteotomy (HTO) on the ankle and subtalar joints via analysis of static radiographic alignment. We hypothesised that surgical alteration of the alignment of the proximal tibia would result in compensatory distal changes. 35 patients recruited as part of the wider Biomechanics and Bioengineering Centre Versus Arthritis HTO study between 2011 and 2018 had pre- and postoperative full-length weightbearing radiographs taken of their lower limbs. In addition to standard alignment measures of the limb and knee (mechanical tibiofemoral angle, Mikulicz point, medial proximal tibial angle), additional measures were taken of the ankle/subtalar joints (lateral distal tibial angle, ground-talus angle, joint line convergence angle of the ankle) as well as a novel measure of stance width. Results were compared using a paired T-test and Pearson's correlation coefficient. Following HTO, there was a significant (5.4°) change in subtalar alignment. Ground-talus angle appeared related both to the level of malalignment preoperatively and the magnitude of the alignment change caused by the HTO surgery; suggesting subtalar positioning as a key adaptive mechanism. In addition to compensatory changes within the subtalar joints, the patients on average had a 31% wider stance following HTO. These two mechanisms do not appear to be correlated but the morphology of the tibial plafond may influence which compensatory mechanisms are employed by different subgroups of HTO patients. These findings are of vital importance in clinical practice both to anticipate potential changes to the ankle and subtalar joints following HTO but it could also open up wider indications for HTO in the treatment of ankle malalignment and osteoarthritis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 114 - 114
1 Mar 2017
Riviere C Girerd D Ollivier M Argenson J Parratte S
Full Access

Background. A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. Methods. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients) (figure 1). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. Results. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=−0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449) (figure 2 and 3). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. Conclusion. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 46 - 46
1 Sep 2012
Hozack W Nogler M Callopy D Mayr E Deirmengian G Sekyra K
Full Access

INTRODUCTION. While standard instrumentation tries to reproduce mechanical axes based on mechanical alignment guides, a new “shape matching” system derives its plan from kinematic measurements using pre-operative MRIs. The current study aimed to compare the resultant alignment in a matched pair cadaveric study between the Shape Match and a standard mechanical system. METHODS. A prospective series of Twelve (12) eviscerated torso's were acquired for a total of twenty four (24) limb specimens that included intact pelvises, femoral heads, knees, and ankles. The cadavers received MRI-scans, which were used to manufacture the Shape Match cutting guides. Additionally all specimen received “pre-operative” CT-scans to determine leg axes. Two (2) investigating surgeons performed total knee arthroplasties on randomly chosen sides by following the surgical technique using conventional instruments. On the contralateral sides, implantation of the same prosthesis was done using the Kinematic Shape Match Cutting Guides. A navigation system was used to check for leg alignement. Implant alignement was determined using post-operative CT-scans. For statistical analysis SPSS was used. RESULTS. In measurements using the navigation system, the overall alignment of the leg showed no significant differences between the two tested systems. This was also found in the CT-Measurements. In the Shape Match group the difference between the planned and the final implantation regarding overall limb alignment ranged between −0,5° (valgus) and 6° varus (p=0,518; CI −1,97°/1,05°). The leg alignement in the conventional group ranged between −2,5° and 13° varus (p=0,176; CI −4,93°/1,02). DISCUSSION AND CONCLUSION. As expected, the two compared system employ different alignment strategies, which reflected in variations of the combinations of the three-dimensional component position on the femur and the tibia. These different strategies result in overall leg alignment that compares well between the two different methods, with fewer outliers in the Shape Match group


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 167 - 167
1 Mar 2013
Kester M D'Alessio J Flores-Hernandez C Lima DD
Full Access

Introduction. Component and limb alignment (especially varus >3°) have been associated with soft-tissue imbalance, increased polyethylene wear, and tibial tray subsidence. However, not all clinical outcome studies have found significant correlation between tibial varus and revision surgery. While the link between limb alignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. In this study, we analyzed the effect of limb alignment and tibial tray alignment on the risk for bone damage and subsequent risk for tray loosening. Methods. A finite element model of knee arthroplasty previously validated with in vitro cadaver testing was used. Models of four subjects were constructed with tibial resections simulating a 0°, 3°, 5°, and 7° varus alignment with respect to the mechanical axis of the tibia and the tray implanted at the corresponding angles. Tibial tray orientation was simulated without change in limb alignment (i.e. maintaining the mechanical axis of the knee at 0°) and with limb alignment ranging from 3° valgus to 7° varus (Fig 1). A static load equivalent to three times the bodyweight of the subject was applied in line with the mechanical knee axis. Relative motion between the tibial tray and tibial bone was calculated. Elements with an equivalent von Mises strain >0.4% were selected and assigned an elastic modulus of 5 MPa to reflect damaged bone. Simulation was repeated and after-damage micromotion recorded. Results. At neutral limb alignment, average tray micromotion was <10 μm and did not increase significantly with increasing tray varus (Fig 2). The after-damage micromotion also did not increase significantly. However, limb alignment had a more substantial effect on before- and after-damage micromotion (Fig 3). The magnitude of micromotion increased with increasing varus limb alignment. Discussion. We did not find significant increase in micromotion with increased tray varus (of up to 7°) as long as neutral limb mechanical axis was maintained by compensating for tibial varus with femoral valgus. The volume of bone at risk also did not increase significantly with increasing tray varus. Removing the damaged bone did little to affect after-damage micromotion. This suggests that the “damaged” bone was not an important factor and likely did not contribute to the stability of the tray under the loading conditions analyzed in this report. Changes in limb alignment significantly offset the net axial load vector resulting in damage in a greater volume of elements due to overloading. This is due to the shift in Mechanical axis and load vector with subsequent increase in moment applied to the model. The micromotion was also substantially increased after the damage indicating that the damaged bone was providing structural support to the tray. This emphasizes the effects of increasing the static coronal loading in this model. Consequently, it identifies the benefit of neutral limb alignment in this loading scenario. This model is an extremely valuable tool in studying the effect of surgical alignment, loading, and activity on damage to proximal bone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 118 - 118
10 Feb 2023
Sundaraj K Corbett J Yong Yau Tai J Salmon L Roe J
Full Access

The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the CT coronal scout image. Eligible patients underwent unilateral or bilateral primary TKA for osteoarthritis under the care of investigating surgeon between 2017 and 2022, with both EOS X-Ray Imaging Acquisition System and CT scans performed preoperatively. Coronal mechanical alignment was measured on the supine coronal scout CT scan and the standing HKA EOS. Pre-operative lower limb coronal alignment was assessed on 96 knees prior to TKA on the supine coronal scout CT scan and the standing HKA EOS. There were 56 males (56%), and 44 right knees (44%). The mean age was 68 years (range 53-90). The mean coronal alignment was 4.7 degrees (SD 5.3) on CT scan and 4.6 degrees (SD 6.2) on EOS (p=0.70). There was a strong positive correlation of coronal alignment on CT scan and EOS (pearson. 0.927, p=0.001). The mean difference between EOS and CT scan was 0.9 degrees (SD 2.4). Less than 3 degrees variation between measures was observed in 87% of knees. On linear regression for every 1° varus increase in CT HKA alignment, the EOS HKA alignment increased by 0.93° in varus orientation. The model explained 86% of the variability. CT demonstrates excellent reliability for assessing coronal lower limb alignment compared to EOS in osteoarthritic knees. This supports the routine use of CT to plan TKA without further weight bearing imaging in routine cases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 28 - 28
23 Feb 2023
Boudali A Chai Y Farey J Vigdorchik J Walter W
Full Access

The spinopelvic alignment is often assessed via the Pelvic Incidence-Lumbar Lordosis (PI-LL) mismatch. Here we describe and validate a simplified method to evaluating the spinopelvic alignment through the L1-Pelvis angle (L1P). This method is set to reduce the operator error and make the on-film measurement more practicable. 126 standing lateral radiographs of patients presenting for Total Hip Arthroplasty were examined. Three operators were recruited to label 6 landmarks. One operator repeated the landmark selection for intra-operator analysis. We compare PI-LL mismatch obtained via the conventional method, and our simplified method where we estimate this mismatch using PI-LL = L1P - 90°. We also assess the method's reliability and repeatability. We found no significant difference (p > 0.05) between the PI-LL mismatch from the conventional method (mean 0.22° ± 13.6) compared to L1P method (mean 0.0° ± 13.1). The overall average normalised root mean square error (NRMSE) for PI-LL mismatch across all operators is 7.53% (mean -3.3° ± 6.0) and 6.5% (mean -2.9° ± 4.9) for the conventional and L1P method, respectively. In relation to intra-operator repeatability, the correlation coefficients are 0.87 for PI, 0.94 for LL, and 0.96 for L1P. NRMSE between the two measurement sets are PI: 9.96%, LL: 5.97%, and L1P: 4.41%. A similar trend is observed in the absolute error between the two sets of measurements. Results indicate an equivalence in PI-LL measurement between the methods. Reproducibility of the measurements and reliability between operators were improved. Using the L1P angle, the classification of the sagittal spinal deformity found in the literature translates to: normal L1P<100°, mild 100°<L1P<110°, and severe L1P>110°. Surgeons adopting our method should expect a small improvement in reliability and repeatability of their measurements, and a significant improvement of the assessment of the mismatch through the visualisation of the angle L1P


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2021
Glenday J Gonzalez FQ Wright T Lipman J Sculco P Vigdorchik J
Full Access

Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial alignment strategies: mechanical alignment (i.e., perpendicular to the tibial mechanical axis) and 2° tibial varus alignment (the femoral resection accounts for additional 2° varus). The baseplate was modeled as solid titanium (E=114.3 GPa; v=0.33). The pegs and a 1.2 mm layer on the bone-contact surface were modeled as 3D-printed porous titanium (E=1.1 GPa; v=0.3). Bone material properties were non-homogeneous, determined from the CT scans using relationships specific to the proximal tibia. [2,4]. The bone-implant interface was modelled as frictional with friction coefficients for solid and porous titanium of 0.6 and 1.1, respectively. The tibia was fixed 77 mm distal to the resection. For mechanical alignment, instrumented TKR loads previously measured in vivo. [5]. were applied to the top of the baseplate throughout level gait in 2% intervals (Fig.1a). For varus alignment, the varus/valgus moment was modified to match the ratio of medial-lateral force distribution from Smith et al. [1]. (Fig.1b). Results. For both alignments and all bones, the largest micromotion and amount of bone at risk of failure occurred during mid stance, at 16% of gait (Figs.2,3). Peak micromotion, located at the antero-lateral edge of the baseplate, was 153±32 µm and 273±48 µm for mechanical and varus alignment, respectively. The area of the baseplate with micromotion above 40 µm (the threshold for bone ingrowth. [3]. ) was 28±5% and 41±4% for mechanical and varus alignment, respectively. The amount of bone at risk of failure at the bone-implant interface was 0.5±0.3% and 0.8±0.3% for the mechanical and varus alignment, respectively. Discussion. The peak micromotion and the baseplate area with micromotion above 40 µm increased with varus alignment compared to mechanical alignment. Furthermore, the amount of bone at risk of failure, although small for both alignments, was greater for varus alignment. These results suggest that varus alignment, consisting of a combination of femoral and tibial alignment, may negatively impact bone ingrowth and increase the risk of bone failure for cementless tibial baseplates of this TKR design


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 10 - 10
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk. 468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt, femoral rotation, and preoperative leg length discrepancy (LLD). All patients received 3D templating with the same implant combination (Depuy; Corail/Pinnacle). Implants were positioned according to standardised criteria. Each patient was simulated in a novel ROM simulation that instantaneously calculates bony and prosthetic impingement limits in functional movements. Simulated motions included flexion and standing-external rotation (ER). Each patient's ROM was simulated with their bones oriented in both functional and neutral positions. 13% patients suffered a ROM impingement for functional but not neutral extension-ER. As a result, 48% patients who failed the functional-ER simulation would not be detected without consideration of the functional bony alignment. 16% patients suffered a ROM impingement for functional but not neutral flexion. As a result, 65% patients who failed the flexion simulation would not be detected without consideration of the functional bony alignment. We have developed a ROM simulation for use with preoperative planning for THA surgery that can solve bony and prosthetic impingement limits instantaneously. The advantage of our ROM simulation over previous simulations is instantaneous impingement detection, not requiring implant geometries to be analysed prior to use, and addressing the functional position of both the femur and pelvis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 89 - 89
23 Feb 2023
Marasco S Gieroba T Di Bella C Babazadeh S Van Bavel D
Full Access

Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 24 - 24
1 Oct 2014
Leardini A Ensini A Belvedere C Tamarri S Barbadoro P d'Amato M Giannini S
Full Access

INTRODUCTION. In total knee arthroplasty (TKA), the effectiveness of the mechanical alignment (MA) within 0°±3° has been recently questioned. A novel implantation approach, i.e. the kinematic alignment (KA), emerged recently, this being based on the pre-arthritic lower-limb alignment. In KA, the trans-cylindrical axis is used as the reference, instead of the trans-epicondylar one, for femoral component alignment. This axis is defined as the line passing through the centres of the posterior femoral condyles modeled as cylinders. Recently, patient specific instrumentation (PSI) has been introduced in TKA as an alternative to conventional instrumentation. This provides a tool for preoperative implant planning also via KA. Particularly, KA using PSI seems to be more effective in restoring normal joint kinematics and muscle activity. The purpose of this study was to report preliminarily joint kinematic and electromyography results of two patient groups operated via conventional MA or KA, the latter using PSI. PATIENT AND METHODS. Twenty patients recruited for TKA were implanted with Triathlon® prosthesis (Stryker®-Orthopaedics, Mahwah, NJ-USA). Seventeen patients, eleven operated targeting MA using the convention instrumentation (group A) and six targeting KA (group B) using PSI (Stryker®-Orthopaedics), were assessed at 6 month follow-up clinically via IKSS and biomechanically. Knee kinematics during stair-climbing, chair-rising, and extension-against-gravity were evaluated using three-dimensional mono-planar video-fluoroscopy (CAT® Medical-System, Monterotondo, Italy) synchronised with electromyography (Wave-Wireless, Cometa®, Milan, Italy). Component pose was reconstructed to calculate knee flexion/extension (FE), ad/abduction (AA), internal/external-rotation (IE), together with the rotation of the contact-line (CLR), i.e. line connecting the medial (MCP) and lateral (LCP) tibio-femoral contact points. MCP and LCP antero-posterior translations were calculated and reported in percentage (%) of the tibial base-plate length. RESULTS. Postoperative clinical scores were better in group B. Knee/functional scores were 78±20/80±23 in group A and 91±12/90±15 in group B. AA range was found smaller than 3°, and physiological ranges of FE and IE were found in both groups. From extension to flexion, MCP translations were all anterior of about 13.8±5.6% anterior, 17.0±6.6% posterior and 15.4±6.6.9% posterior in group A, and 13.0±3.4%, 16.6±5.3% and 16.6±5.6% in group B; corresponding values for LCP were all posterior of about 9.5±3.6%, 11.1±4.3% and 8.7±2.6% in group A, and 102±2.1%, 13.7±8.6% and 14.6±9.8% in group B. These resulted in a CLR equal to 8.2°±3.2°, 10.2°±3.7° and 8.8°±5.3° in group A, and 7.3°±3.5°, 12.6°±2.6° and 12.5°±4.2° group B. Much more consistent patterns of motion were observed in group B. A prolonged activation of the vastus medialis and lateralis was observed in group A. DISCUSSION. These preliminary results show that better scores can be expected using PSI via KA. Although not relevant kinematic differences were observed between groups, more consistent patterns were observed in using PSI via KA. Furthermore, the observed less prolonged activation of the knee extensor muscles suggest that a more natural soft tissue balance is experienced in this group. These findings show a good efficacy of KA using PSI in TKA. The clinical/functional analysis of more patients and a longer follow-up are necessary to establish the claimed superiority of the novel approach


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 56 - 56
1 Feb 2021
Catani F Illuminati A Ensini A Zambianchi F Bazzan G
Full Access

Introduction. Robotics have been applied to total knee arthroplasty (TKA) to improve surgical precision in component placement and joint function restoration. The purpose of this study was to evaluate prosthetic component alignment in robotic arm-assisted (RA)-TKA performed with functional alignment and intraoperative fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. It was hypothesized that functionally aligned RA-TKA the femoral and tibial cuts would be performed in line with the preoperative joint line orientation. Methods. Between September 2018 and January 2020, 81 RA cruciate retaining (CR) and posterior stabilized (PS) TKAs were performed at a single center. Preoperative radiographs were obtained, and measures were performed according to Paley's. Preoperatively, cuts were planned based on radiographic epiphyseal anatomies and respecting ±3° boundaries from neutral coronal alignment. Intraoperatively, the tibial and femoral cuts were modified based on the individual soft tissue-guided fine-tuning, aiming for symmetric medial and lateral gaps in flexion/extension. Robotic data were recorded. Results. A total of 56 RA-TKAs performed on varus knees were taken into account. On average, the tibial component was placed at 1.9° varus (SD 0.7) and 3.3° (SD 1.0) in the coronal and sagittal planes, respectively. The average femoral component alignment, based on the soft tissue tensioning with spoons, resulted as follows: 0.7° varus (SD 1.7) in the coronal plane and 1.8° (SD 2.1) of external rotation relative to surgical transepicondylar axis in the transverse plane. A statistically significant linear direct relationship was demonstrated between radiographic epiphyseal femoral and tibial coronal alignment and femoral (r=0.3, p<0.05) and tibial (r=0.3, p<0.01) coronal cuts, resepctively. Conclusion. Functionally aligned RA-TKA performed in varus knees, aiming for ligaments’ preservation and balanced flexion/extension gaps, provided joint line respecting femoral and tibial cuts on the coronal plane


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 83 - 83
1 Dec 2022
Bornes T Kubik J Klinger C Altintas B Dziadosz D Ricci W
Full Access

Tibial plateau fracture reduction involves restoration of alignment and articular congruity. Restorations of sagittal alignment (tibial slope) of medial and lateral condyles of the tibial plateau are independent of each other in the fracture setting. Limited independent assessment of medial and lateral tibial plateau sagittal alignment has been performed to date. Our objective was to characterize medial and lateral tibial slopes using fluoroscopy and to correlate X-ray and CT findings. Phase One: Eight cadaveric knees were mounted in extension. C-arm fluoroscopy was used to acquire an AP image and the C-arm was adjusted in the sagittal plane from 15° of cephalad tilt to 15 ° of caudad tilt with images captured at 0.5° increments. The “perfect AP” angle, defined as the angle that most accurately profiled the articular surface, was determined for medial and lateral condyles of each tibia by five surgeons. Given that it was agreed across surgeons that more than one angle provided an adequate profile of each compartment, a range of AP angles corresponding to adequate images was recorded. Phase Two: Perfect AP angles from Phase One were projected onto sagittal CT images in Horos software in the mid-medial compartment and mid-lateral compartment to determine the precise tangent subchondral anatomic structures seen on CT to serve as dominant bony landmarks in a protocol generated for calculating medial and lateral tibial slopes on CT. Phase Three: 46 additional cadaveric knees were imaged with CT. Tibial slopes were determined in all 54 specimens. Phase One: Based on the perfect AP angle on X-ray, the mean medial slope was 4.2°+/-2.6° posterior and mean lateral slope was 5.0°+/-3.8° posterior in eight knees. A range of AP angles was noted to adequately profile each compartment in all specimens and was noted to be wider in the lateral (3.9°+/-3.8°) than medial compartment (1.8°+/-0.7° p=0.002). Phase Two: In plateaus with a concave shape, the perfect AP angle on X-ray corresponded with a line between the superiormost edges of the anterior and posterior lips of the plateau on CT. In plateaus with a flat or convex shape, the perfect AP angle aligned with a tangent to the subchondral surface extending from center to posterior plateau on CT. Phase Three: Based on the CT protocol created in Phase Two, mean medial slope (5.2°+/-2.3° posterior) was significantly less than lateral slope (7.5°+/-3.0° posterior) in 54 knees (p<0.001). In individual specimens, the difference between medial and lateral slopes was variable, ranging from 6.8° more laterally to 3.1° more medially. In a paired comparison of right and left knees from the same cadaver, no differences were noted between sides (medial p=0.43; lateral p=0.62). On average there is slightly more tibial slope in the lateral plateau than medial plateau (2° greater). However, individual patients may have substantially more lateral slope (up to 6.8°) or even more medial slope (up to 3.1°). Since tibial slope was similar between contralateral limbs, evaluating slope on the uninjured side provides a template for sagittal plane reduction of tibial plateau fractures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 11 - 11
1 Jan 2022
Cheruvu MS Ganapathi M
Full Access

Abstract. Background. Conventional TKR aims for neutral mechanical alignment which may result in a smaller lateral distal femoral condyle resection than the implant thickness. We aim to explore the mismatch between implant thickness and bone resection using 3D planning software used for Patient Specific Instrumentation (PSI) TKR. Methods. This is a retrospective anatomical study from pre-operative MRI 3D models for PSI TKR. Cartilage mapping allowed us to recreate the native anatomy, enabling us to quantify the mismatch between the distal lateral femoral condyle resection and the implant thickness. Results. We modelled 292 knees from PSI TKR performed between 2012 and 2015. There were 225 varus knees and 67 valgus knees, with mean supine hip-knee-angle of 5.6±3.1 degrees and 3.6±4.6 degrees, respectively. In varus knees, the mean cartilage loss from medial and lateral femoral condyle was 2.3±0.7mm and 1.1±0.8mm respectively; the mean overstuffing of the lateral condyle 1.9±2.2mm. In valgus knees, the mean cartilage loss from medial and lateral condyle was 1.4±0.8mm and 1.5±0.9mm respectively; the mean overstuffing of the lateral condyle was 4.1±1.9mm. Conclusions. Neutral alignment TKR often results in overstuffing of the lateral condyle. This may increase the patello-femoral pressure at the lateral facet in flexion. Anterior knee pain may be persistent even after patellar resurfacing due to tight lateral retinacular structures. An alternative method of alignment such as anatomic alignment may minimise this problem


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 51 - 51
1 May 2021
Abood AA Petruskevicius J Vogt B Frommer A Rödl R Rölfing JD
Full Access

Introduction. Intraoperative assessment of coronal alignment is important when performing corrective osteotomies around the knee and ankle, limb lengthening and trauma surgery. The Joint Angle Tool (JAT) provides surgeons with information about the anatomic and mechanical axes intraoperatively based on true anteroposterior radiographs. Aim: Presentation of the JAT, a low-cost goniometer for intraoperative assessment of the lower limb alignment. Materials and Methods. The JAT consists of pre-printed joint orientation angles of the anatomic and mechanical axis including normal variations on a plastic sheet. It is placed on the screen of the image intensifier after obtaining a true anterior-posterior image. The pre-printed joint orientation angles can intraoperatively assist the surgeons in achieving the pre-planned axis correction. Here, its feasibility is demonstrated in four cases. Results. Here, we present the intraoperative use of JAT in four cases:. 77 mm femoral bone transport due to non-union utilizing a bone transport nail,. distal femoral osteotomy correcting coronal and torsional malalignment using a retrograde intramedullary trauma nail,. proximal / high tibial open wedge osteotomy with an intramedullary implant correcting varus malalignment in a hypophosphatemic rickets patient, and. a supramalleolar, closing wedge osteotomy realigning the anatomic axis with a plate and screws. Conclusions. The JAT is a modified goniometer which allows intraoperative assessment of the mechanical and anatomic axis. JAT is applicable throughout the entire surgical procedure irrespective of the method of internal fixation and may provide additional reassurance of correct alignment. The JAT consists of a plastic sheet with printed joint orientation angles and their normal variation. JAT is freely available from . profeedback.dk/JAT/JAT.pdf. for use and modification according to Creative Commons license (CC BY-SA 4.0)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2021
Sires J Wilson C
Full Access

Robotic-assisted technology in total knee arthroplasty (TKA) aims to increase implantation accuracy, with real-time data being used to estimate intraoperative component alignment. Postoperatively, Perth computed tomography (CT) protocol is a valid measurement technique in determining both femoral and tibial component alignments. The aim of this study was to evaluate the accuracy of intraoperative component alignment by robotic-assisted TKA through CT validation. A total of 33 patients underwent TKA using the MAKO robotic-assisted TKA system. Intraoperative measurements of both femoral and tibial component placements, as well as limb alignment as determined by the MAKO software were recorded. Independent postoperative Perth CT protocol was obtained (n.29) and compared with intraoperative values. Mean absolute difference between intraoperative and postoperative measurements for the femoral component were 1.17 degrees (1.10) in the coronal plane, 1.79 degrees (1.12) in the sagittal plane, and 1.90 degrees (1.88) in the transverse plane. Mean absolute difference between intraoperative and postoperative measurements for the tibial component were 1.03 degrees (0.76) in the coronal plane and 1.78 degrees (1.20) in the sagittal plane. Mean absolute difference of limb alignment was 1.29 degrees (1.25), with 93.10% of measurements within 3 degrees of postoperative CT measurements. Overall, intraoperatively measured component alignment as estimated by the MAKO robotic-assisted TKA system is comparable to CT-based measurements


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 112 - 112
10 Feb 2023
Ross M Vince K Hoskins W
Full Access

Constrained implants with intra-medullary fixation are expedient for complex TKA. Constraint is associated with loosening, but can correction of deformity mitigate risk of loosening?. Primary TKA's with a non-linked constrained prosthesis from 2010-2018 were identified. Indications were ligamentous instability or intra-medullary fixation to bypass stress risers. All included fully cemented 30mm stem extensions on tibia and femur. If soft tissue stability was achieved, a posterior stabilized (PS) tibial insert was selected. Pre and post TKA full length radiographs showed. i. hip-knee-ankle angles (HKAA). ii. Kennedy Zone (KZ) where hip to ankle vector crosses knee joint. 77 TKA's in 68 patients, average age 69.3 years (41-89.5) with OA (65%) post-trauma (24.5%) and inflammatory arthropathy (10.5%). Pre-op radiographs (62 knees) showed varus in 37.0%. (HKAA: 4. o. -29. o. ), valgus in 59.6% (HKAA range 8. o. -41. o. ) and 2 knees in neutral. 13 cases deceased within 2 years were excluded. Six with 2 year follow up pending have not been revised. Mean follow-up is 6.1 yrs (2.4-11.9yrs). Long post-op radiographs showed 34 (57.6%) in central KZ (HKKA 180. o. +/- 2. o. ). . Thirteen (22.0%) were in mechanical varus (HKAA 3. o. -15. o. ) and 12 (20.3%) in mechanical valgus: HKAA (171. o. -178. o. ). Three failed with infection; 2 after ORIF and one with BMI>50. The greatest post op varus suffered peri-prosthetic fracture. There was no aseptic loosening or instability. Only full-length radiographs accurately measure alignment and very few similar studies exist. No cases failed by loosening or instability, but PPF followed persistent malalignment. Infection complicated prior ORIF and elevated BMI. This does not endorse indiscriminate use of mechanically constrained knee prostheses. Lower demand patients with complex arthropathy, especially severe deformity, benefit from fully cemented, non-linked constrained prostheses, with intra-medullary fixation. Hinges are not necessarily indicated, and rotational constraint does not lead to loosening


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 60 - 60
1 Feb 2020
Zhang J Persohn S Bhowmik-Stoker M Otto J Paramasivam M Wahdan A Choplin R Territo P
Full Access

Introduction. Component position and overall limb alignment following Total Knee Arthroplasty (TKA) have been shown to influence device survivorship and clinical outcomes. However current methods for measuring post-operative alignment through 2D radiographs and CTs may be prone to inaccuracies due to variations in patient positioning, and certain anatomical configurations such as rotation and flexion contractures. The purpose of this paper is to develop a new vector based method for overall limb alignment and component position measurements using CT. The technique utilizes a new mathematical model to calculate prosthesis alignment from the coordinates of anatomical landmarks. The hypothesis is that the proposed technique demonstrated good accuracy to surgical plan, as well as low intra and inter-observer variability. Methods. This study received institutional review board approval. A total of 30 patients who underwent robotic assisted TKA (RATKA) at four different sites between March 2017 and January 2018 were enrolled in this prospective, multicenter, non-randomized clinical study. CT scans were performed prior to and 4–6 weeks post-operatively. Each subject was positioned headfirst supine with the legs in a neutral position and the knees at full extension. Three separate CT scans were performed at the anatomical location of the hip, knee, and ankle joint. Hip, knee, and ankle images were viewed in 3D software and the following vertices were generated using anatomical landmarks: Hip Center (HC), Medial Epicondyle Sulcus (MES), Lateral Epicondyle (LE), Femur Center (FC), Tibia Center (TC), Medial Malleolus (MM), Lateral Malleolus (LM), Femur Component Superior (FCS), Femur Component Inferior (FCI), Coronal Femoral Lateral (CFL), Coronal Femoral Medial (CFM), Coronal Tibia Lateral (CTL), and Coronal Tibia Medial (CTM). Limb alignment and component positions were calculated from these vertices using a new mathematical model. The measurements were compared to the surgeons’ operative plan and component targeted positions for accuracy analysis. Two analysts performed the same measurements separately for inter-observer variability analysis. One of the two analysts repeated the measurements at least 30 days apart to assess intra-observer variability. Correlation analysis was performed on the intra-observer analysis, while Bland Altman analysis was performed on the inter-observer analysis. Results. Average measurement errors of overall limb alignments, femoral and tibial component position were less than 1 degree. Bland Altman plots for inter-observer analysis demonstrate great reproducibility in limb and component alignment measurements between surgeons with no bias. Correlation plots for intra-observer analysis demonstrate low variability with slopes ranging between 0.86 to 1.00 and R value greater than 0.88. Discussion. The proposed method demonstrated good accuracy to plan and low intra- and inter observer variability. This technique may be considered for assessing component position accuracy with post-operative CTs. Further studies are needed to investigate the robustness of the method in a larger cohort. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 16 - 16
23 Apr 2024
Murray E Connaghan J Creavin K Egglestone A Jamal B
Full Access

Introduction. By utilising the inherent variability achievable with circular frames, surgeons can manage a wide spectrum of complex injuries, and can deal with deformity at multiple levels, in multiple planes. The aim of this study was to assess functional outcomes utilising patients reported outcome measures (PROMs) of patients being treated with circular (Ilizarov) frame fixation for complex lower limb injuries and assess these results in conjunction with the observed postoperative alignment of the patients’ limbs. Materials & Methods. Cases were identified using a prospectively collected database of adult patients presenting between July 2018 and August 2021. Functional outcomes were assessed using the American Orthopaedic Foot and Ankle Score (AOFAS), the 5-level EQ-5D (EQ5D5L), the Lysholm Knee Scoring Scale (LKSS), the Olerud-Molendar Ankle Score (OMAS), and the Tegner Activity Scale (TAS). Postoperative radiographs were analysed for fracture union and to quantify malunion (as described in Dror Paleys Principles of Deformity Correction). Results. The mean AOFAS, EQ5D5L, LKSS and OMAS scores showed an initial drop from pre-op to early time points and then steady increase over the early, mid, late and frame-off time points, with a resultant score higher than pre-op. Malunion was found in 35 (41.7%) patients, 7 patients had a malunion within 5 degrees of normal, 15 from 5–10 degrees of normal, 12 from 10–15 degrees of normal and 2 out with 15 degrees of normal. Conclusions. Circular frame fixation is an attractive option in complex lower limb trauma where alternative fixation methods are unsuitable. Whilst post-operative success to the surgeon might be determined radiographically, patient reported outcomes give a functionally important, objective measure of the success of the surgery to the patient