Advertisement for orthosearch.org.uk
Results 1 - 20 of 84
Results per page:
Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67. phox. was involved in suramin-enhanced chondrocyte phenotype maintenance. Results. Suramin enhanced the COL2A1 and ACAN expression and lowered COL1A1 synthesis. Also, in 3D pellet culture GAG and COL2A1 production was significantly higher in pellets consisting of chondrocytes expanded with suramin compared to controls. Surprisingly, suramin also increased ROS generation, which is largely caused by enhanced NOX (p67. phox. ) activity and membrane translocation. Overexpression of p67. phox. but not p67. phox. AD (deleting amino acid (a.a) 199 to 212) mutant, which does not support ROS production in chondrocytes, significantly enhanced chondrocyte phenotype maintenance, SOX9 expression, and AKT (S473) phosphorylation. Knockdown of p67. phox. with its specific short hairpin (sh) RNA (shRNA) abolished the suramin-induced effects. Moreover, when these cells were treated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) inhibitor LY294002 or shRNA of AKT1, p67. phox. -induced COL2A1 and ACAN expression was significantly inhibited. Conclusion. Suramin could redifferentiate dedifferentiated chondrocytes dependent on p67. phox. activation, which is mediated by the PI3K/AKT/SOX9 signalling pathway. Cite this article: Bone Joint Res 2022;11(10):723–738


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 13 - 13
4 Apr 2023
Meesters D Groven R Wijnands N Poeze M
Full Access

Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after incubation with 30 mM arginine. A future recommendation would be to investigate the effects of citrulline in a similar experiment, as this shows even more promising results to enhance the nitric oxide metabolism in sepsis and bone healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 9 - 9
14 Nov 2024
Enderami E Timmen M Stange R
Full Access

Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different collagens, proteoglycans, and growth factors produced by chondroprogenitor cells that differentiate from proliferating to hypertrophic chondrocytes. In vitro chondrocyte growth is challenging due to differences in behaviour between 2D and 3D cultures. Our aim is to establish a murine 3D spheroid culture method using chondrocytes to study the complex interaction of cells on the chondro-osseous border during enchondral ossification. Method. Primary chondrocytes were isolated from the knee of WT new-born mice and used to form 10,000 cell number spheroids. We used the ATDC5-chondrocyte cell line as an alternative cell type. Spheroids were observed for 7, 14, and 21 days before embedding in paraffin for slicing. Alcian blue staining was performed to identify proteoglycan positive areas to prove the formation of extracellular matrix in spheroids. Collagen type 2, and Collagen type X expression were analyzed via quantitative real-time PCR and immunohistochemistry. Result. Alcian blue staining showed increasing matrix formation from day 7 to day 14 and proliferative chondrocytes at early time points. Both cell types showed increasing mRNA expression of Collagen type 2 from day 7 to day 21. Collagen type X positive staining starting from day 14 on confirmed the development of hypertrophic stage of chondrocytes. ATDC5 cells exhibited a slower progression in chondrogenic differentiation compared to primary chondrocytes. Conclusion. In chondrocyte spheroids, we observed proceeding differentiation of chondrocytes reaching hypertrophic phase. Primary chondrocytes showed faster development than ATDC5 cell line. Overall, spheroid culture of chondrocytes could be a good basis to study the interaction of different cells types of the chondro-osseous border by combination of chondrocytes with e.g., endothelial cells and osteoblasts within the spheroid. Those organoid cultures might also help to reduce animal experiments in the future, by mimicking complex regeneration procedures like bone growth or fracture healing. DFG(German Research Foundation)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 34 - 34
1 Jul 2020
Tan Q Xie Y Chen L
Full Access

The superficial zone (SFZ) of articular cartilage has unique structural and biomechanical features, and is important for joint long-term function. Previous studies have shown that TGF-β/Alk5 signaling upregulating PRG4 expression maintains articular cartilage homeostasis. However, the exact role and molecular mechanism of TGF-β signaling in SFZ of articular cartilage homeostasis are still lacking. In this study, a combination of in vitro and in vivo approaches were used to elucidate the role of Alk5 signaling in maintaining the SFZ of articular cartilage and preventing osteoarthritis initiation. Mice with inducible cartilage SFZ-specific deletion of Alk5 were generated to assess the role of Alk5 in OA development. Alterations in cartilage structure were evaluated histologically. The chondrocyte apoptosis and cell cycle were detected by TUNEL and Edu staining, respectively. Isolation, culture and treatment of SFZ cells, the expressions of genes associated with articular cartilage homeostasis and TGF-β signaling were analyzed by qRT-PCR. The effects of TGF-β/Alk5 signaling on proliferation and differentiation of SFZ cells were explored by cells count and alcian blue staining. In addition, SFZ cells isolated from C57 mice were cultured in presence of TGF-β1 or SB505124 for 7 days and transplanted subcutaneously in athymic mice. Postnatal cartilage SFZ-specific deletion of Alk5 induced an OA-like phenotype with degradation of articular cartilage, synovial hyperplasia as well as enhanced chondrocyte apoptosis, overproduction of catabolic factors, and decreased expressions of anabolic factors in chondrocytes. qRT-PCR and IHC results confirmed that Alk5 gene was effectively deleted in articular cartilage SFZ cells. Next, the PRG4-positive cells in articular cartilage SFZ were significantly decreased in Alk5 cKO mice compared with those in Cre-negative control mice. The mRNA expression of Aggrecan and Col2 were decreased, meanwhile, expression of Mmp13 and Adamts5 were significantly increased in articular cartilage SFZ cells of Alk5 cKO mice. In addition, Edu and TUNEL staining results revealed that slow-cell cycle cell number and increase the apoptosis positive cell in articular cartilage SFZ of Alk5 cKO mice compared with Cre-negative mice, respectively. Furthermore, all groups of SFZ cells formed ectopic solid tissue masses 1 week after transplantation. Histological examination revealed that the TGF-β1-pretreated tissues was composed of small and round cells and was positive for alcian blue staining, while the SB505124-pretreated tissue contained more hypertrophic cells though it did stain with alcian blue. TGF-β/alk5 signaling is an essential regulator of the superficial layer of articular cartilage by maintaining chondrocyte number, its differentiation properties, and lubrication function. Furthermore, it plays a critical role in protecting cartilage from OA initiation


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining. Results. Suramin inhibited IL-1β-induced apoptosis, downregulated matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5, and upregulated collagen 2A (Col2a1) and aggrecan in IL-1β-treated NP cells. IL-1β-induced inflammation, assessed by IL-1β, IL-8, and tumour necrosis factor α (TNF-α) upregulation, was alleviated by suramin treatment. Suramin suppressed IL-1β-mediated proteoglycan depletion and the induction of MMP-3, ADAMTS-4, and pro-inflammatory gene expression in ex vivo experiments. Conclusion. Suramin administration represents a novel and effectively therapeutic approach, which could potentially alleviate IDD by reducing extracellular matrix (ECM) deposition and inhibiting apoptosis and inflammatory responses in the NP cells. Cite this article: Bone Joint Res 2021;10(8):498–513


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims. Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results. The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion. Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689


Bone & Joint Research
Vol. 9, Issue 10 | Pages 689 - 700
7 Oct 2020
Zhang A Ma S Yuan L Wu S Liu S Wei X Chen L Ma C Zhao H

Aims. The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). Methods. TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. Results. UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). Conclusion. MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689–700


Bone & Joint Research
Vol. 9, Issue 11 | Pages 751 - 760
1 Nov 2020
Li Y Lin X Zhu M Xun F Li J Yuan Z Liu Y Xu H

Aims. This study aimed to investigate the effect of solute carrier family 20 member 2 (SLC20A2) gene mutation (identified from a hereditary multiple exostoses family) on chondrocyte proliferation and differentiation. Methods. ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) SLC20A2 gene. The inorganic phosphate (Pi) concentration in the medium of cells was determined. The expression of markers of chondrocyte proliferation and differentiation, the Indian hedgehog (Ihh), and parathyroid hormone-related protein (PTHrP) pathway were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results. The expression of SLC20A2 in MUT group was similar to WT group. The Pi concentration in the medium of cells in MUT group was significantly higher than WT group, which meant the SLC20A2 mutation inhibited Pi uptake in ATDC5 chondrocytes. The proliferation rate of ATDC5 chondrocytes in MUT group was greater than WT group. The expression of aggrecan (Acan), α-1 chain of type II collagen (COL2A1), and SRY-box transcription factor 9 (SOX9) were higher in MUT group than WT group. However, the expression of Runt-related transcription factor 2 (Runx2), α-1 chain of type X collagen (COL10A1), and matrix metallopeptidase 13 (MMP13) was significantly decreased in the MUT group. Similar results were obtained by Alcian blue and Alizarin red staining. The expression of Ihh and PTHrP in MUT group was higher than WT group. An inhibitor (cyclopamine) of Ihh/PTHrP signalling pathway inhibited the proliferation and restored the differentiation of chondrocytes in MUT group. Conclusion. A mutation in SLC20A2 (c.C1948T) decreases Pi uptake in ATDC5 chondrocytes. SLC20A2 mutation promotes chondrocyte proliferation while inhibiting chondrocyte differentiation. The Ihh/PTHrP signalling pathway may play an important role in this process. Cite this article: Bone Joint Res 2020;9(11):751–760


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 66 - 66
1 Mar 2021
Pugliese E Zeugolis D
Full Access

The enthesis is a specialised zonal tissue interface between tendon and bone, essential for adequate force transmission and composed by four distinct zones, namely tendon, fibrocartilage, mineralized fibrocartilage and bone. Following injuries and surgical repair, the enthesis is often not reestablished and so far, traditionally used tissue substitutes have lacked to reproduce the complexity of the native tissue. In this work, we hypothesised that a collagen-based three-layer scaffold that mimic the composition of the enthesis, in combination with bioactive molecules, will enhance the functional regeneration of the enthesis. A three-layer sponge composed of a tendon-like layer (collagen I), a cartilage-like layer (collagen II) and a bone-like layer (collagen I and hydroxyapatite) was fabricated by an iterative layering freeze-drying technique. Scaffold porosity and structural continuity at the interfaces were assessed through SEM analysis. Bone-marrow derived stem cells (BMSCs) were seeded by syringe vacuum assisted technique on the scaffold. Scaffolds were cultured in basal media for 3 days before switching to differentiation media (chondrogenic, tenogenic and osteogenic). BMSCs metabolic activity, proliferation and viability were assessed by alamarBlue, PicoGreen and Live/Dead assays. At D21 the scaffolds were fixed, cryosectioned and Alizarin Red and Alcian Blue stainings were performed in order to evaluate BMSC differentiation towards osteogenic and chondrogenic lineage. The presence of collagen I and tenascin in the scaffolds was evaluated by immunofluorescence staining at D21 in order to assess tenogenic differentiation of BMSCs. Subsequently, the cartilage-like layer was functionalized with IGF-1, seeded with BMSCs and cultured in basal media up to D21. Structural continuity at the interfaces of the scaffolds was confirmed by SEM and scaffold porosity was assessed as >98%. The scaffolds supported cell proliferation and infiltration homogeneously throughout all the layers up to D21. Osteogenic differentiation of BMSC selectively in the bone-like layer was confirmed by Alizarin red staining in scaffolds cultured in basal and osteogenic media. Alcian blue staining revealed the presence of proteoglycans selectively in the cartilage-like layer in scaffolds cultured in chondrogenic media but not in basal media. Increased expression of the tenogenic markers collagen I and tenascin were observed in the tendon-like layer of scaffolds cultured in tenogenic but not in basal media for 21 days. The presence of IGF-1 increased osteogenic and chondrogenic differentiation of BMSCs, whereas no difference was observed for tenogenic differentiation. In conclusion, a 3-layer collagen sponge was successfully fabricated with distinct but integrated layers; the different collagen composition of the non-functionalized 3-layer sponge was able to regulate BMSC differentiation in a localized manner within the scaffold. The scaffold functionalization with IGF-1 accelerated chondrogenic and osteogenic BMSC differentiation. Overall, functionalization of the 3-layer scaffolds holds promising potential in enthesis regeneration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 1 - 1
1 Dec 2020
Gögele CL Kerling V Lenhart A Wiltzsch S Schäfer-Eckart K Minnich B Weiger TM Schulze-Tanzil G
Full Access

Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past, bioactive glass scaffolds have been developed for bone replacement and some of these variants have also been colonized with chondrocytes. However, the hydroxylapaptite phase that is usually formed in bioglass scaffolds is not very suitable for cartilage formation (chondrogenesis). This interdisciplinary project was undertaken to develop a novel slowly degrading bioactive glass scaffold tailored for cartilage repair by resembling the native extracellular cartilage matrix (ECM) in structure and surface properties. When colonized with articular chondrocytes, the composition and topology of the scaffolds should support cell adherence, proliferation and ECM synthesis as a prerequisite for chondrogenesis in the scaffold. To study cell growth in the scaffold, the scaffolds were colonized with human mesenchymal stromal cells (hMSCs) and primary porcine articular chondrocytes (pACs) (27,777.8 cells per mm. 3. ) for 7 – 35 d in a rotatory device. Cell survival in the scaffold was determined by vitality assay. Scanning electron microscopy (SEM) visualized cell ultramorphology and direct interaction of hMSCs and pACs with the bioglass surface. Cell proliferation was detected by CyQuant assay. Subsequently, the production of sulphated glycosaminoglycans (sGAGs) typical for chondrogenic differentiation was depicted by Alcian blue staining and quantified by dimethylmethylene blue assay assay. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of cartilage-specific aggrecan, Sox9, collagen type II and dedifferentiation-associated collagen type I. To demonstrate the ECM-protein synthesis of the cells, the production of collagen type II and type I was determined by immunolabelling. The bioactive glass scaffold remained stable over the whole observation time and allowed the survival of hMSCs and pACs for 35 days in culture. The SEM analyses revealed an intimate cell-biomaterial interaction for both cell types showing cell spreading, formation of numerous filopodia and ECM deposition. Both cell types revealed initial proliferation, decreasing after 14 days and becoming elevated again after 21 days. hMSCs formed cell clusters, whereas pACs showed an even distribution. Both cell types filled more and more the pores of the scaffold. The relative gene expression of cartilage-specific markers could be proven for hMSCs and pACs. Cell associated sGAGs deposition could be demonstrated by Alcian blue staining and sGAGs were elevated in the beginning and end of the culturing period. While the production of collagen type II could be observed with both cell types, the synthesis of aggrecan could not be detected in scaffolds seeded with hMSCs. hMSCs and pACs adhered, spread and survived on the novel bioactive glass scaffolds and exhibited a chondrocytic phenotype


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 148 - 148
11 Apr 2023
Kopinski-Grünwald O Guillaume O Arslan A Van Vlierberghe S Ovsianikov A
Full Access

In the field of tissue engineering (TE), mainly two approaches have been widely studied and utilised throughout the last two decades. Ovsianikov et al. proposed a third strategy for tissue engineering to combine the advantages of the scaffold-based and scaffold-free approach [1]. We utilise the third strategy for TE by fabrication of cell spheroids that are reinforced by microscaffolds, called tissue units (TUs). Aim of the presented study is to differentiate TUs towards a chondrogenic phenotype to show the self-assembly of a millimetre sized cartilage-like tissue in a bottom-up TE approach in vitro. Two-Photon polymerization (2PP) was utilised to fabricate highly porous microscaffolds with a diameter of 300 µm. The biocompatible and biodegradable, resin Degrad INX (supplied from Xpect INX, Ghent, Belgium) was used for 3D-printing. Each microscaffold was seeded with 4000 human adipose derived stem cells (hASCs) in low-adhesive 96-well plates to allow spheroid formation. TUs were differentiated towards the chondrogenic lineage by application of chondrogenic media, subsequently merged in a cylindrical agarose mold, to fuse into a connected tissue with a diameter of ~1.8 mm and a height of 8 mm. The characterization of TUs differentiated towards the chondrogenic phenotype included gene expression and protein analysis. Furthermore, immunohistochemically staining for Collagen II and Alcian blue staining were performed to investigate the matrix deposition and fusion of the self-assembled tissue. Our results suggest that the utilised method could be a promising approach for a variety of tissue engineering approaches, due to the good applicability to a defect side combined with the self-assembly properties of the TUs. Furthermore, the differentiation potential of hASCs is not limited to chondrogenic lineages only, which could pave the way to further TE applications in the future. Acknowledgements:. This research work was financially supported by the European Research Council (Consolidator Grant 772464 A.O.)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 60 - 60
1 Dec 2017
Jensen LK Henriksen NL Jensen HE
Full Access

Aim. Despite the expanding research focusing on bacterial biofilm formation, specific histochemical biofilm stains have not been developed for light microscopy. Therefore, pathologists are often not aware of the presence of biofilm formation when examining slides for diagnosing bacterial infections, including orthopaedic infections. The aim of the present study was to develop a combined histochemical and immunohistochemical biofilm stain for simultaneous visualization of Staphylococcus aureus bacteria and extracellular matrix in different colours using light microscopy. Methods. Infected bone tissue was collected from two different porcine models of osteomyelitis inoculated with the biofilm forming S. aureus strain S54F9. The infection time was 5 and 15 days, respectively. First, 25 common histochemical protocols were used in order to find stains that could identify extracellular biofilm matrix. Hereafter, the histochemical protocols for Alcian Blue pH3, Luna and Methyl-pyronin green were combined with an immunohistochemical protocol based on a specific antibody against S. aureus. Finally, the three new combined protocols were applied to infected bone tissue from a child suffering from chronic staphylococcal osteomyelitis for more than a year. For all combined protocols applied on all types of tissue (porcine and human) the number of double stained bacterial aggregates were counted. On the same sections the percentage of extracellular matrix of representative bacterial aggregates was calculated by image analysis. Results. Simultaneous visualization of bacterial cells and extracellular matrix in different colours was detected in both porcine and human tissue sections with all three combined protocols. The bacterial cells were red to light brown and the extracellular matrix either light blue, blue or orange depending on the histochemical stain i.e. if it was Alcian blue pH3 (colouring polysaccharides), Luna or Methyl green-pyronin (both colouring extracellular DNA), respectively. In the porcine models, 10 percent of the bacterial aggregates in a 10× magnification field revealed both the extracellular matrix and bacteria simultaneously in two different colours. For the human case, this was seen in 90 percent of the bacterial aggregates. The percentage of extracellular matrix of representative bacterial aggregates was 60 and 20 percent in the human and porcine tissues, respectively. Conclusions. The amount of S. aureus biofilm extracellular matrix increased with infection time. A combination of histochemical and immunohistochemical staining is a practical method for identification and evaluation of S. aureus biofilm in orthopaedic infections


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 60 - 60
1 Mar 2010
Saha* S Kirkham J Wood D Curran S Yang X
Full Access

Articular cartilage has limited regenerative potential. Regeneration via autografts or cell therapy is clinically efficacious but the extent of regenerative success depends upon use of an appropriate cell source. The aim of this study was to compare the proliferative and chondrogenic potentials of three human cell types (human bone marrow stromal cells - HBMSCs, neonatal and adult chondrocytes) commonly used in cartilage tissue engineering. HBMSCs, neonatal and adult chondrocytes (passage 2) were cultured in basal and chondrogenic media. At 2, 4 and 6 days, the cells were analysed for morphology and doubling time. Alkaline phosphatase specific activity (ALPSA) was quantified for each group at 2, 4 and 6 weeks. Chondrogenic potential of each cell type was assessed via a pellet culture model. Cryosections were stained with Alcian blue/Sirius Red. HBMSCs showed either elongated or polymorphic phenotypes, with a doubling time of 40 h. Neonatal chondrocytes showed a uniform spindle shape and had the shortest doubling time (16 h). Adult chondrocytes, were also spindle shaped, though slightly larger than the neonatal cells, with a longer doubling time of 22 h. Expression of ALPSA in basal media was of the order HBMSCs > adult chondrocytes > , neonatal chondrocytes. In chondrogenic culture, this order changed to adult chondrocytes > HBMSCs > neonatal chondrocytes. In 3D pellet cultures, all three cell types stained positive for Alcian Blue and showed the presence of chondrocyte-like cells enclosed in lacunae. This comparative study suggests that neonatal chondrocytes are the most proliferative with lowest ALP expression. However, in terms of clinical applications, HBMSCs may be better for cartilage regeneration given their lower ALP expression under chondrogenic conditions when compared with adult chondrocytes under the same conditions. The study has provided information to inform clinical cell therapy for cartilage regeneration


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 444 - 444
1 Sep 2009
Richter W Bock R Hennig T Weiss S
Full Access

Common in vitro protocols for TGF-β driven chondrogenic differentiation of MSC lead to hypertrophic differentiation of cells. This might cause major problems for articular cartilage repair strategies based on tissue engineered cartilage constructs derived from these cells. BMPs have been described as alternate inductors of chondrogenesis while PTHrP and FGF-2 seem promising for modulation of chondrogenic hypertrophy. The aim of this study was to identify chondrogenic culture conditions avoiding cellular hypertrophy. We analyzed the effect of a broad panel of growth factors alone or in combination with TGF-β3 on MSC pellets cultured in vitro and after transplantation in SCID mice in vivo. Chondrogenic differentiation in vitro was successful after supplementation of the chondrogenic medium with TGF-β3 as confirmed by positive collagen type II and alcian blue staining. None of the other single growth factors (BMP-2, -4, -6, -7, FGF-1, IGF-1) led to sufficient chondrogenesis as indicated by negative collagen type II and alcian blue staining. Each of these factors, however, allowed chondrogenesis in combination with TGF-β without suppressing collagen type X expression. Combination of TGF-β with PTHrP or FGF-2 suppressed ALP activity, induced MMP13 expression, and prevented differentiation to chondrocyte-like cells when added from day 0. Delayed addition of PTHrP or FGF-2 stopped chondrogenesis at the reached level and repressed ALP activity. The treatment of MSC constructs with FGF-2 or PTHrP in the last 3 weeks before transplantation did not prevent hypertrophy and calcification in vivo. FGF-2 and PTHrP were potent inhibitors for early and late chondrogenic differentiation in contrast to BMPs. As soon as a developmental window of collagen type II positive and collagen type X negative pellet cultures can be created in this model, both seem to be potent factors to suppress hypertrophy and to generate stable chondrocytes for transplantation purposes


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 97 - 97
1 May 2011
Blakeney W Carey-Smith R Underhill M Short B Wood D
Full Access

Introduction: Chondral injuries of the knee are commonly seen at arthroscopy, yet there is no consensus on the most appropriate treatment method. However, untreated cartilage injury predisposes to osteoarthritis contributing to pain and disability. For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient cells for therapeutic intervention. Although recent reports demonstrated the central role of oxygen in the function and differentiation of chondrocytes, little is known of the effect of physiological low oxygen concentrations during the expansion of the cells and whether this alters their chondrogenic capacity. Methods: Articular mouse chondrocytes were prepared from the distal femoral condyles of adult mice and chondrocytes were liberated by collagenase type II treatment. Cells were cultured in RPMI 1640 media in monolayer under normoxic or hypoxic conditions (5% O2). Chondrogenic potential was subsequently assessed by plating the cells under micromass conditions and glycosaminoglycan deposition was determined by alcian blue staining. Having determined that oxygen tension infiuences murine chondrocyte expansion and differentiation, similar studies were conducted using adult human chondrocytes taken from knee arthroplasty off-cuts, and Aggrecan (ACAN) gene expression was analyzed using real-time quantitative PCR. Results: Cellular morphology of cells from mouse articular cartilage was improved in hypoxic culture, with a markedly more fibroblastic appearance seen after greater than 2 passages in normoxic conditions. Micromass cultures maintained in hypoxic conditions demonstrated stronger staining with alcian blue, indicating stronger expression of cartilage-associated glycosaminoglycans. Expansions of human chondrocytes under hypoxic conditions led to an ~ 2-fold increase in the expression of ACAN in comparison to cells in normoxic conditions. Differentiation of passage 2 chondrocytes under hypoxic conditions also improved the expression of ACAN when compared to culturing under normoxia. Ten day hypoxic cultures exhibited an ~ 5-fold increase in ACAN expression in comparison to normoxic cultures. Interestingly, ACAN expression normoxic-cultured cells could be increased by > 4-fold by transfer to hypoxic conditions. Conclusions: In vivo, the chondrocytes are adapted to an avascular hypoxic environment. Accordingly, applying 5% O2 in the expansion phase in the course of cell-based cartilage repair strategies may more closely mimic the normal chondrocyte microenvironment and may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 22 - 22
1 Mar 2006
Giannini S Buda R Vannini F Grigolo B Filippi M
Full Access

Introduction Osteochondral lesions of the talus are a common occurrence especially in sports injuries. The biomechanical nature of the ankle joint makes it susceptible to sprains which can cause damage not only to the capsulo-ligamentous structures, but also to the joint cartilage and subchondral bone. As it is known, joint cartilage is a highly specialized and multitask tissue. Because joint cartilage has poor reparative capability, damage may be irreversible and as a consequence, can also lead to osteoarthritis. The purpose of this study is to review the results of a series of patients treated with autologous chondrocytes implantation (A.C.I.) and to describe the evolution in surgical technique that we have been implemented in the last 8 years. Methods Thirty-nine patients with a mean age of 27 8 years affected by osteochondral lesions of the talus > 1.5 cm2, were treated by autologous chondrocyte implantation. All patients were checked clinically and by MRI up to 4 years follow-up. The first 9 patients received the ACI by open technique and the remaining 30, arthroscopically. In the last 10 patients the cartilage harvested from the detached osteochondral fragment was used for the colture. All patients were checked clinically (AOFAS score), radiographically and by MRI, before surgery, at 12 months and at follow-up. Eleven patients underwent a second arthroscopy with a bioptic cartilage harvest at 1 year follow-up. Samples were stained with Safranin-O and Alcian Blue. Immunohistochemical analysis for collagen type II was also performed. Results Before surgery the mean score was 48.4 17 points, at 12 months 90.9 12 (p< 0.0005), while at follow up was 93.8 8 (p< 0.0005) demonstrating an improvement over time. The histological and immunohistological analyses performed on the cartilage samples using Safranin-O, Alcian Blue staining and anti-human collagen type II antibody respectively showed a typical cartilage morphology, were positive for collagen type II and for proteoglycans expression. Conclusions The clinical and histological results have confirmed the validity of the technique utilized, with laboratory data confirming the newly formed cartilage was of hyaline type for all the cases evaluated


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 122 - 122
1 Dec 2020
Huri PY Talak E Kaya B Huri G
Full Access

Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden osteochondral graft differentiation will be induced by controlled release of growth factor BMP-2 and TGF-β. Before this step, nanocapsules formation with double emission technique with model protein BSA was carried out with different concentration of PCL (5%,10% and 20%). The morphology and structure of the nanocapsules were determined with scanning electron microscopy (SEM). Also, we successfully designed and printed alginate and CMC based scaffold with 20 layers. Chondrogenic and osteogenic differentiation of IPFP-ASCs with suitable culture conditions was obtained. The isolation of IPFP-ASCs, formation of the nanocapsules, and 3D printing of osteochondral graft were carried out successfully


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 403 - 403
1 Oct 2006
Tilley S Dunlop DG Oreffo ROC
Full Access

The demographic challenges of an advancing aged population emphasise the need for innovative approaches to tissue reconstruction to augment and repair tissue lost as a consequence of trauma or degeneration. Currently, the demand for bone graft outstrips supply, a key issue in the field of revision hip surgery where impaction bone grafting of the femur and acetabulum has impressive results in the short and medium term but often requires up to 6 donated femoral heads. Spine and selected tumour and trauma cases are also eminently suitable for this mode of bone stock replacement. In the current study, we examined the histological and biochemical findings of two parallel in-vitro and in-vivo studies using human mesenchymal stem cells on synthetic scaffolds for possible bone augmentation. The first study confirmed that culture expanded bone marrow cells from 3 patients (mean age 76 +/−4) could be successfully seeded onto washed morsellised allograft. The seeded graft was then exposed to a force equivalent to a standard femoral impaction (impulse=474 J/m2) and cultured for 4 weeks in osteogenic media. Examination of cell viability using cell tracker green and ethidium homodimer-1 and confocal microscopy confirmed extensive cell proliferation and viability following impaction and culture. Alcian blue/ Sirius red confirmed matrix production, alkaline phosphatase immunocytochemistry production of enzyme activity and Goldners trichrome enhanced osteoid formation. The second study compared 3 scaffolds; bone allograft, a ß – Tricalcium Phosphate (ß-TCP) graft substitute and a 50:50 mixture of allograft and ß-TCP. The scaffolds were seeded with either immunoselected STRO-1+ human mesenchymal stem cells or unselected marrow cells. The scaffolds were similarly exposed to impaction forces and cultured for 4 weeks in vitro or in vivo, implanted subcutaneously in MF1nu/nu mice. Both studies demonstrated cellular viability, activity and osteogenesis as assessed using confocal microscopy, Goldners trichrome and alcian blue/Sirius cytochemistry. The demonstration of enhanced osteoid formation as a consequence of stem cell proliferation after impaction grafting augers well for the success of autologous stem cell implantation on impacted graft substitute with or without the addition of morsellised allograft. The implications therein for clinical use in the future await clinical trials


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 114 - 114
1 Mar 2006
Gigante A Bevilacqua C Ricevuto A Greco F
Full Access

Introduction: The present study analysed the clinical outcome and the histological characteristics of MACI implantation at 3 years follow up. Materials and methods: Seventeen patients (11 males and 6 females, mean age 37 years) suffering from large cartilage lesions (2cm.2) of the knee (13 cases) and the ankle (4 cases), underwent autologous chondrocyte implantation procedure in which the expanded cells were seeded on type I/III collagen membrane before transplantation (MACI – Verigen, D). Clinical outcomes were assessed by ICRS evaluation package: revised IKDC form and Knee Osteoarthritis and Injury Outcome Score (KOOS). At least 12 months after implantation biopsy samples were arthroscopically obtained from 8 patients previous informed consent. The regenerated tissue were taken according to the ICRS standardized procedure. The specimens were stained with safranin-O and alcian blue, polyclonal antibodies anti S-100 protein and monoclonal antibodies anti chondroitin sulphate, anti-collagen type I and II. The specimens were evaluated by the ICRS visual histological assessment scale. Results: Improvement 12 months after operation was found subjectively (39.7 to 57.9) and in knee function levels. The International Knee Documentation Committee (IKDC) scores showed marked improvement at 12 months (87% A/B). 90% of biopsies showed: smooth articular surface (I:3), hyaline-like matrix cartilage (II:3), cell distribution (columnar-clusters III:2), predominantly viable cells (IV:3), normal subchondral bone (V:3), normal cartilage mineralization and tide-mark (VI:3). All sections were clearly stained with safranin-O and alcian blue. In all the specimens the cells revealed a strong immunoreaction for S-100 protein and showed a positive reaction for chondroitin-S and type II collagen. Type I collagen was immuno-detected in the more superficial layers of the biopsies. TEM analysis revealed a defined chondral cell phenotype within a chondroid matrix. Tissue heterogeneity and irregularities of the surface were observed in four cases. Conclusions: Clinical improvement and hyaline-like appearance of the repair tissue indicate that MACI implantation is an effective technique for the treatment of large lesions of the articular cartilage of the knee and the ankle


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 11 - 11
1 Mar 2021
Mak CC To K Fekir K Brooks R Khan W
Full Access

Abstract. Objective. SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between mesenchymal stromal cells (MSCs) and chondrocytes by comparing SOX gene expression in their co-culture and respective monocultures. Methods. Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm. 2. The AMSCs were characterised by a panel of MSC surface markers in flow cytometry and were allowed to undergo trilineage differentiation for subsequent histological investigation. SOX5, SOX6, and SOX9 expression of co-cultures and monoculture controls were quantified by TaqMan quantitative real-time PCR. Experiments were performed in triplicate. Results. AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogeneous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 was greater in observed co-cultures than would be expected from an expression profile modelled from monocultures. Conclusions. These findings provide evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project