Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

OP10: COMPARATIVE STUDY ON THE POTENTIAL USE OF DIFFERENT HUMAN CELL TYPES IN CARTILAGE TISSUE ENGINEERING



Abstract

Articular cartilage has limited regenerative potential. Regeneration via autografts or cell therapy is clinically efficacious but the extent of regenerative success depends upon use of an appropriate cell source. The aim of this study was to compare the proliferative and chondrogenic potentials of three human cell types (human bone marrow stromal cells - HBMSCs, neonatal and adult chondrocytes) commonly used in cartilage tissue engineering.

HBMSCs, neonatal and adult chondrocytes (passage 2) were cultured in basal and chondrogenic media. At 2, 4 and 6 days, the cells were analysed for morphology and doubling time. Alkaline phosphatase specific activity (ALPSA) was quantified for each group at 2, 4 and 6 weeks. Chondrogenic potential of each cell type was assessed via a pellet culture model. Cryosections were stained with Alcian blue/Sirius Red.

HBMSCs showed either elongated or polymorphic phenotypes, with a doubling time of 40 h. Neonatal chondrocytes showed a uniform spindle shape and had the shortest doubling time (16 h). Adult chondrocytes, were also spindle shaped, though slightly larger than the neonatal cells, with a longer doubling time of 22 h. Expression of ALPSA in basal media was of the order HBMSCs > adult chondrocytes > , neonatal chondrocytes. In chondrogenic culture, this order changed to adult chondrocytes > HBMSCs > neonatal chondrocytes. In 3D pellet cultures, all three cell types stained positive for Alcian Blue and showed the presence of chondrocyte-like cells enclosed in lacunae.

This comparative study suggests that neonatal chondrocytes are the most proliferative with lowest ALP expression. However, in terms of clinical applications, HBMSCs may be better for cartilage regeneration given their lower ALP expression under chondrogenic conditions when compared with adult chondrocytes under the same conditions. The study has provided information to inform clinical cell therapy for cartilage regeneration.

Correspondence should be addressed to Dr Roger Bayston, Division of Orthopaedic and Accident Surgery, Queen’s Medical Centre, Nottingham, NG7 2UH, England.