Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 8 - 8
1 Sep 2012
Mereddy P Sidaginamale R Gandhi J Langton D Logishetty R Cooke N Nargol A
Full Access

Introduction. Adverse reaction to metal debris (ARMD) is an increasingly recognised complication of metal-on-metal hip arthroplasty. A previous study described poor results following revision and recommended early intervention. 1. We determined the outcome of revision for ARMD and present the largest case series to date. Methods. Between 2005 and 2010, 98 patients (101 hips) underwent revision for ARMD. The diagnosis of ARMD was based on clinical history, examination, appearance at revision and histology. Patients were reviewed at 3, 6 and 12 months and annually thereafter. Patient satisfaction, Harris hip scores (HHS) and metal ions were analysed. Results. 54 patients (55 hips) with an average age of 58 years (29 to 81 years) completed minimum one year follow-up (range 1 to 5 years). The mean HHS improved from 49.7 (10 to 79) to 86.3 (40 to 100). Forty-five (81%) patients were satisfied and nine (16%) patients were not satisfied with the outcome. The mean serum cobalt 24.5 (1.65 to 96.6) improved to 1.17 (0.31 to 6.99). Two patients died from unrelated diseases. There were 8 (14%) dislocations and one (1.8%) sciatic nerve palsy that has not recovered. Eight (14%) patients needed re-revision (dislocation: 5 and pain: 3). 26 % had severe soft tissue damage. Six patients have persistent pain and four had recurrent effusions. There were no dislocations in the most recent 50 cases. Discussion. Treatment of ARMD is technically demanding because extensive soft tissue damage can compromise stability. Early results in the current study were promising. Early intervention reduced the dislocation rate and appeared to have a positive impact on outcome. A small group of patients may have persistent pain and recurrent effusions that may require re-revision


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2020
Abe S Iwata H Ezaki A Ishida H Sakata K Matsuoka H Sogou E Nannno K Kuroda S Nakamura S Hayashi J Nakai T
Full Access

A-70-year old woman underwent uncomplicated total hip arthroplasty using a titanium modular stem with a 46mm CoCr femoral head, a titanium shell, and a metal linear (Wright Medical Technology). Eight years after implantation, she presented with a painful left hip. A pelvic radiograph revealed adequate positioning of both hip implants without any signs of wear of loosening. CT scanning confirmed the presence of a 5 × 5 cm soft tissue mass in the ilium above the cup component accompanied by the iliac fracture. The patient was diagnosed as having an adverse reaction to metal debris (ARMD) after a metal-on-metal THA and revision was performed. Perioperatively?tissue necrosis and partial destruction of the abductor mechanism were found in the absence of any macroscopic infection. Both the neck trunnion and bore of the head showed slight signs of corrosion. The modular neck was revised with a ceramic 28mm head and a new dual-mobility liner(Zimmer Biomet). The iliac fracture was fixed with a porous trabecular metal augment(Zimmer Biomet). The histopathology of tissue sample revealed extensively necrotic material with focal cellular areas of inflammatory cells containing macrophages and neutrophilas. Metalic debris was also scattered in the necrotic materials. After the revision, the patient was recovered without pain or dislocation, and iliac fracture was well fixed. Instability is a substantial problem in the revision of ARMD. Extensive necrosis with gross deficiency of the abductor mechanism is associated with postoperative dislocation. Revision of failed MoM THA a dual-mobility device an effective strategy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 2 - 2
1 Sep 2012
Higgins J Pearce A Price M Conn K Stranks G Britton J
Full Access

Introduction. Large head total hip arthroplasty (THA) reduces dislocation rates and provides a theooretically larger range of motion. We hypothesised that this would translate into greater improvement in functional scores when compared to 28mm metal-on-polyethylene THA at 5 years. We believe ours to be the first in vivo comparison study. Methods. A multi-surgeon case-control study in a District General Hospital. The study group consisted of 427 patients with 452 hips, the 38mm uncemented metal-on-metal articulation THA (M2A/Bi-metric, Biomet UK). The control group consisted of 438 age and sex-matched patients with 460 28mm metal-on-polyethylene articulation THA (Exeter/Exeter or Exeter/Duraloc - Stryker UK. All patients were assessed in a physiotherapist led Joint Review Service as part of their standard follow up, with functional scoring using Oxford Hip (scored 0–48) and WOMAC scores (0–100). Results. The demographics for the 38mm and 28mm groups gave mean ages of 65.8 years and 66.4 years, 40.4% and 39.3% male respectively. Pre-operative functional scores were comparable, with Oxford Hip scores of 23.3 and 26.8 respectively, WOMAC 49 compared to 53. At each review point there was no statistical difference in either Oxford or WOMAC scores and this was sustained at 5 yrs. Dislocation rates in the 38mm group were lower (2.9% vs. 5%) though not statistically significant (p = 0.111). Revision rate was significantly higher in the larger head group, primarily due to adverse reaction to metal debris (4.6% vs. 2.0%). Conclusions. There is no functional difference between 38mm metal-on-metal THA and 28mm metal-on-polyethylene THA at five years. Dislocation rates were found to be lower in the 38mm THAs as would be expected, but this was not statistically significant. The difference in revision rates was found to be due to metal-on-metal adverse reactions to metal debris, and their use is therefore not advocated in the current climate


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 138 - 138
1 May 2016
Pritchett J
Full Access

BACKGROUND. The most common salvage of a failed metal-on-metal hip resurfacing is to remove both the femoral and acetabular resurfacing components and perform a total hip replacement. The other choices are to perform an acetabular or femoral only revision. A one or two piece acetabular component or a polyethylene bipolar femoral component that matches the retained metal resurfacing acetabular component is used. The considerations in favor of performing a one component resurfacing revision are maintaining the natural femoral head size, limiting the surgical effort for the patient and surgeon, and bone conservation. There are often favorable cost considerations with single component revision surgery. The reasons for femoral component revision are femoral neck fracture, femoral component loosening and an adverse reaction to metal wear debris. Performing a femoral component only revision requires a well fixed and well oriented acetabular component. Acetabular revision is most often performed for an adverse reaction to metal wear debris or loosening. METHODS. 81 acetabular revisions and 46 femoral revisions were evaluated 4 to 14 years after surgery. 83% of patients had their initial surgery at outside institutions. The mean age was 46 and 65% of patients were women. A two piece titanium backed polyethylene component was used in 44 patients and a one or two piece metal component was used in 37. A dual mobility femoral prosthesis mated to a retained metal acetabular component was used for the femoral revisions and no conversions to a metal-on-metal total hip replacement were performed. We selected polyethylene acetabular components for patients with adverse reactions to metal wear debris if their femoral component was less than 48 mm or if there was no matching metal acetabular component available for their femoral component. We used dual mobility components for femoral loosening, femoral neck fractures and adverse reactions to metal wear debris in patients with well-fixed and well oriented metal acetabular components. Dual mobility components were also used if there are any concerns about the femoral component or in some older patients. We performed one component revisions rather than conversion to total hip replacement on 88% of patients presenting with failed resurfacing prostheses. RESULTS. There were no failures with polyethylene acetabular components. There were two failures due to ongoing adverse metal reactions in patients receiving metal revision acetabular components. There was one failure with a dual mobility prosthesis due to accelerated polyethylene wear from undetected edge loading on a retained worn metal acetabular component. There were two infections and one patient with continued pain. There were no dislocations. The average Harris Hip Score was 94. The UCLA activity score was 6 or greater for all but 4 patients. There were 6 revisions to total hip replacement. The Kaplan-Meier survivorship was 94%. 95% of patients rated their outcome as excellent or good. CONCLUSIONS. Failed metal-on-metal hip resurfacing prostheses can be successfully revised without conversion to total hip replacement in most instances. A detailed knowledge of matching prostheses is necessary. Polyethylene prostheses for the acetabular or femoral reconstruction are often needed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 89 - 89
1 May 2019
Engh C
Full Access

Ceramic-on-polyethylene (COP) bearings have traditionally been reserved for younger patients that were at high risk of polyethylene wear requiring revision. With the 1999 advent of highly crosslinked polyethylene (XLP), wear with XLP has not been a cause for revision. Simulator studies have not shown a difference in wear comparing COP to metal-on-polyethylene (MOP). Therefore, and considering the additional cost of COP, we have until recently not needed COP. However, a 2012 report of 10 cases that developed an adverse reaction to metal debris generated by head neck corrosion has resulted in COP becoming the most common bearing surface as reported by the American Joint Replacement Registry. This reactionary change has occurred despite the fact that we do not understand the cause, do not know the frequency, if it is more common in some implants than others, and we do not know the additional cost or markup of ceramic heads. One study reported a 3.2% revision prevalence caused by mechanically assisted crevice corrosion (MACC) at the head neck junction of a single manufacturer's implant. Other studies have estimated the frequency to be less than 5%. COST IS THE CONCERN in a value based healthcare environment. Models for and against the wholesale use of COP have been proposed and are based on variables that are unknown, including estimated frequency of the problem and the incrementally higher cost of a ceramic head. I use COP in younger patients that I believe will use their hip for more than 15 years. This is based on my personal experience. I have prospectively followed a series of MOP patients for 5 years and not seen cobalt elevations. I have placed new metal femoral heads on corroded femoral tapers without subsequent failure. I have evaluated the taper junctions of postmortem retrievals and found them virtually free of corrosion. A query of our institutional database for MOP primary hips identified 3012 cases between 2006–2017. Eighty revisions (2.7%) were identified. 2 of the 80 were for MACC representing 2.5% of revisions done on our own patients and 0.07% of our MOP cases. Further, evaluating our most recent all cause 350 revisions (7/2015–10/2017) there were 3 revisions for MACC (0.9%). Each one of us needs to EVALUATE OUR OWN PRACTICE AND MAKE AN EDUCATED, VALUE BASED DECISION whether or not to use COP in all patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 57 - 57
1 Apr 2019
Borton Z Nicholls A Mumith A Pearce A Briant-Evans T Stranks G Britton J Griffiths J
Full Access

Aims. Metal-on-metal total hip replacements (MoM THRs) are frequently revised. However, there is a paucity of data on clinical outcomes following revision surgery in this cohort. We report on outcomes from the largest consecutive series of revisions from MoM THRs and consider pre-revision factors which were prognostic for functional outcome. Materials and Methods. A single-centre consecutive series of revisions from MoM THRs performed during 2006–2015 was identified through a prospectively maintained, purpose-built joint registry. The cohort was subsequently divided by the presence or absence of symptoms prior to revision. The primary outcome was functional outcome (Oxford Hip Score (OHS)). Secondary outcomes were complication data, pre- and post-revision serum metal ions and modified Oxford classification of pre-revision magnetic resonance imaging (MRI). In addition, the study data along with demographic data was interrogated for prognostic factors informing on post-revision functional outcome. Results. 180 revisions in 163 patients were identified at a median follow-up of 5.48 (2–11.7) years. There were 152 (84.4%) in the symptomatic subgroup and 28 (15.6%) in the asymptomatic group. Overall median OHS improved from 29 to 37 with revision (P<0.001). Symptomatic patients experienced greater functional benefit (DOHS 6.5 vs. 1.4, p=0.012) compared to asymptomatic patients, though they continued to report inferior outcomes (OHS 36.5 vs 43, p=0.004). The functional outcome of asymptomatic patients was unaffected by revision surgery (pre-revision OHS 41, post-revision OHS 43, p=0.4). Linear regression analysis confirmed use of a cobalt-chrome (CoCr)-containing bearing surface (MoM or metal-on- polyethylene) at revision and increasing BMI were predictive of poor functional outcome (R. 2. 0.032, p=0.0224 and R. 2. 0.039, p=0.015 respectively). Pre- and post-revision serum metal ions and pre-revision MRI findings were not predictive of outcome. The overall complication rate was 36% (n=65) with a re-revision rate of 6.7%. The most common complication was ongoing adverse reaction to metal debris (ARMD, defined as positive post-revision MRI) in 21.1%. The incidence of ongoing ARMD was not significantly different between those with CoCr reimplanted and those without (p=0.12). Conclusions. To our knowledge, our study represents the largest single-centre consecutive series of revision THRs from MoM bearings in the literature. Symptomatic patients experience the greatest functional benefit from revision surgery but do not regain the same level of function as patients who were asymptomatic prior to revision. The re-implantation of CoCr as a primary bearing surface and increasing BMI was associated with poorer functional outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 112 - 112
1 Apr 2019
Farrier A Manning W Moore L Avila C Collins S Holland J
Full Access

INTRODUCTION. The cup component of modern resurfacing systems are often coated creating a cementless press-fit fixation in the acetabulum based on surgical under-reaming, also enabling osseoconduction/integration. Due to the higher density of cortical bone along the antero-superior and postero-inferior regions of the acetabulum, the greatest forces occur between the anterior and posterior columns of the pelvis. This produces pinching of the implant that can result in deformation of the cup. Metal shell/modularpress-fit acetabular cups are susceptible to substantial deformation immediately after implantation. This deformation may affect the lubrication, producing point loading and high friction torques between the head and the cup that increase wear and may lead to head clamping and subsequent cup loosening. We sought to test a novel ceramic on ceramic (CoC) hip resurfacing system that should allay any concerns with the Adverse Reaction to Metal Debris associated with metal on metal (MoM) resurfacing devices. AIM. We sought to quantify the deformation of a novel CoC hip-resurfacing cup after implantation, using a standard surgical technique in a cadaveric model, and compare to the MoM standard. We also assessed if the design clearances proposed for this CoC hip resurfacing implant are compatible with the measured deformations, allowing for an adequate motion of the joint. METHODS. The pelvis from four fresh frozen cadavers were placed into the lateral position. One surgeon with extensive experience in hip resurfacing surgery (JH) prepared all the pelvises for implantation using a posterior approach to the joint and sequential reaming of the acetabulum to 1mm below the implant outer diameter. The acetabulum components were then impacted into the prepared pelvis. We used four ceramic and four metal implants of equal and varying size. (2 × (40/46mm, 44/50mm, 50/56mm, 52/58mm)). The acetabulum cup bearing surface diameter and deformation was measured using a GOM-ATOS optical high precision 3D scanner. 3-Dimensional measurements were taken pre-implantation, immediately after and at 30 minutes following implantation. Two techniques were used to analyse the 3D images: by maximum inscribed diameter and by radial segments. These were compared to the known articulating surface clearance values. RESULTS. The diameter of the cups in both metal and ceramic systems was reduced after implantation when analysing by maximum inscribed diameter and by radial segments. This deformation was maintained at 30 minutes. We can infer there is no significant bone stress relaxation effect following implantation. On ceramic cups, the deformation was larger in larger sizes. However, the 44/50 (the second smallest cup) deformed the least. Despite this, the difference in deformation between these two sizes is minimal. The deformation of sizes 50/56 and 52/58 was equivalent. For the metal cups, there was not a clear correlation between the cup size and the deformation. The largest cup size had the same deformation as the smallest size. CONCLUSIONS. The deformation following implantation of the cup component in a ceramic acetabulum resurfacing behave similarly to a metal implant. Cup deformation measured after implantation is minimal when compared to the minimum design clearance in both systems


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX. ®. delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the wear debris present in the lubricant using scanning electron microscope (SEM). Results and Discussion. The total volumetric wear was 0.25 mm. 3. for CoC joints and 0.29 mm. 3. for titanium trunnions. The total wear volume of the titanium trunnions was in agreement with an explant study (Kocagoz et al, 2016, CORR) which quantified the volumetric material loss from retrieved trunnions with the total wear ranging from 0.0–0.74 mm. 3. The Sa values, pre-and post-test, for heads were 0.003 ± 0.002 and 0.004 ± 0.001 µm and for liners were 0.005 ± 0.001 and 0.005 ± 0.001 µm. Pre-and post-test measurements for Sa of heads (p = 0.184) and liners (p = 0.184) did not show a statistically significant change. The Sa of the trunnions on the unworn and worn areas showed a statistically significant decrease from 0.558 ± 0.060 to 0.312 ± 0.028 µm respectively (p < 0.001). Analysis of wear debris within the lubricant confirmed the presence of titanium. A recent clinical study (Matharu et al, 2016, BMC Musc Dis) found more ARMD in CoC hips than MoP hips. This is despite there being fewer metallic components in a CoC hip than a MoP hip. This in vitro study has shown that one source of metal debris in a CoC hip is the taper-trunnion junction. Conclusion. An explanation for wear related failures in ceramic-on-ceramic hip arthroplasty, despite the low wear arising at the articulating surfaces, may now exist; namely that titanium wear particles are generated from the trunnion. No other long-term hip simulator studies have measured wear at the taper-trunnion junction


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 3 - 3
1 Jun 2018
Engh C
Full Access

Ceramic-on-polyethylene (COP) bearings have traditionally been reserved for younger patients that were at high risk of polyethylene wear requiring revision. With the 1999 advent of highly crosslinked polyethylene (XLP), wear with XLP has not been a cause for revision. Simulator studies have not shown a difference in wear comparing COP to metal-on-polyethylene (MOP). Therefore, and considering the additional cost of COP, we have until recently not needed COP. However, a 2012 report of 10 cases that developed an adverse reaction to metal debris generated by head neck corrosion has resulted in COP becoming the most common bearing surface as reported by the American Joint Replacement Registry. This reactionary change has occurred despite the fact that we do not understand the cause, do not know the frequency, if it is more common in some implants than others, and we do not know the additional cost or markup of ceramic heads. One study reported a 3.2% revision prevalence caused by mechanically assisted crevice corrosion (MACC) at the head neck junction of a single manufacturer's implant. Other studies have estimated the frequency to be less than 5%. COST IS THE CONCERN in a value based health care environment. Models for and against the wholesale use of COP have been proposed and are based on variables that are unknown, including estimated frequency of the problem and the incremental cost of a ceramic head. I use COP in younger patients that I believe will use their hip for more than 15 years. This is based on my personal experience. I have prospectively followed a series of MOP patients for 5 years and not seen cobalt elevations. I have placed new metal femoral heads on corroded femoral tapers without subsequent failure. I have evaluated the taper junctions of postmortem retrievals and found them virtually free of corrosion. A query of our institutional database for MOP primary hips identified 3012 cases between 2006–2017. Eighty revisions (2.7%) were identified. Two of the 80 were for MACC representing 2.5% of revisions done on our own patients and 0.07% of our MOP cases. Further, evaluating our most recent all cause 350 revisions (7/2015-10/2017) there were 3 revisions for MACC (0.9%). Each one of us needs to EVALUATE OUR OWN PRACTICE AND MAKE AN EDUCATED, VALUE BASED DECISION whether or not to use COP in all patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 17 - 17
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs. Methods. A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm. 3. ) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates). Results and Discussion. The mean volumetric wear rates for CoCrMo heads, XLPE liners and titanium trunnions were 0.019, 2.74 and 0.013 mm. 3. /Mc respectively. There was a statistically significant decrease (p<0.001) in the Sa of the liners post-test. This is in contrast to the femoral heads roughness in which no change was observed (p = 0.338). This head roughness result matches with a previous MoP in vitro test (Saikko, 2005, IMechE-H). The Sa of the head tapers on the worn area showed a statistically significant increase (p<0.001) compared with unworn, with an associated removal of the original machining marks. The mean volumetric wear rate of the head tapers obtained using the CMM (0.028 ± 0.016 mm. 3. /Mc) was not statistically different (p=0.435) to the mean volumetric wear rate obtained gravimetrically (0.019 ± 0.020 mm. 3. /Mc) for the femoral heads. Therefore, wear of the heads arose mainly from the internal taper. The mean wear rates of the CoCrMo taper and titanium trunnion are in agreement with a MoP explant study (Kocagoz et al, 2016, CORR). Conclusion. This is the first long-term hip simulator study to report wear generated from the taper-trunnion junction of MoP hips


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 388 - 388
1 Dec 2013
Latham J Cook R Bolland B Wakefield A Culliford D Tilley C
Full Access

Introduction. Metal on metal hip arthroplasty continues to be controversial. Emerging evidence suggests that there are multiple modes of failure, and that the results of revision surgery are influenced by host and implant factors. Methods. This study compares a single surgeon series of hip resurfacings (Birmingham Hip Resurfacing {BHR}) and large diameter metal on metal total hip replacements (LDMOMTHR). Primary outcome measures included survival rates, failure secondary to histologically identified Adverse Reaction to Metal Debris (ARMD), and patient reported outcome measures (Oxford Hip Score {OHS}) following revision. Between 1999 and 2005, 458 BHR and 175 LDMOMTHR were performed. At latest review 43 BHR's (9.4%) and 28 LDMOMTHR's (14%) have been revised. Results. Failure secondary to ARMD was significantly greater in LDMOMTHR compared to BHR failures (89% and 16% respectively). Histology demonstrated a higher Aseptic Lymphocytic Vascular and Associated Lesions (ALVAL) score in the LDMOMTHR failures than the BHR failures (8.6 LDMOMTHR, 6.3 BHR). Patient reported outcomes were better following revision for failed BHR compared to LDMOMTHR. There was no difference between the revision cohorts for cup inclination, metal ion levels and gender. Failure of the BHR has predominantly been due to those causes unique to resurfacing such as avascular necrosis and fracture. In our series, aggressive ALVAL was unusual and clinical outcome following revision was superior compared to LDMOMTHR failures. The likely mechanisms that are responsible for the differences in outcome and the clinical implications will be discussed


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 15 - 15
1 May 2016
Sasaki T Kodama T Ogawa Y
Full Access

Introduction. In recent years, an increasing number of reports related to adverse reactions to metal debris (ARMD) following metal-on-metal (MOM) total hip arthroplasty (THA) have been published. Some patients who experience ARMD require revision surgery. Objectives. In this study, we aimed to evaluate the mid-term results of MOM THA. Methods. We retrospectively reviewed all patients who underwent THA at JCHO Saitama medical center from January 2007 to December 2010. A metal liner and metal femoral head were used in 37 of 214 cases (17%). This sub-group comprised 2 men and 35 women (mean age at surgery, 63.5 years; range, 39–79 years). The original disease is 28 osteoarthritis, 5 osteonecrosis, 3 rheumatoid arthritis and 1 rapidly destructive hip coxarthropathy. We investigated the system type, size (cup, femoral head, and stem), and cup position (anteversion and inclination). Moreover, we used imaging (radiography and computed tomography [CT] or magnetic resonance imaging [MR]) to assess for aseptic loosening, metal hypersensitivity reactions, and pseudotumor formation. Results. Six women with osteoarthritis experienced significant localized soft tissue reactions, and underwent revision. The average duration to revision was 41months(range, 28–63). Of these, 4 patients had received the PINNACLE cup system (Depuy; 4/14, 28.6%) and 2 had received the M2a-Taper cup system (BIOMET; 2/23, 8.7%). The femoral head sizes of the PINNACLE system used was 36 mm, and the femoral head sizes of the M2q-Taper systems used were 28mm and 32mm. Four patients had no signs or symptoms, 1 patient complained of anterior thigh dullness and 1 patient had a dislocation. The average cup anteversion was 15.7 degrees (range, 10–19 degrees) and the average inclination was 49.2 degrees (range, 43–57 degrees). Conclusions. MOM THA was associated with a higher incidence of revision. The majority of cases that required revision had no severe signs or symptoms. Therefore, all cases of MOM THA should be assessed periodically using CT or MRI


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 17 - 17
1 Dec 2013
Bolland B Gardner E Roques A Maul C Culliford D Zeineh N O'Hara L
Full Access

This study reports the mid-term results of a large bearing uncemented metal on metal total hip replacement (MOMHTHR) matched series using the Synergy stem and Birmingham modular head in 36 hips (mean follow up 61 months). All patients underwent clinical, metal ion and MRI assessment. Wear analysis was performed on retrieved heads using Redlux non-contact optical profilometry. Seven patients (19%) have undergone revision surgery. All revisions had two or more of either symptoms, high metal ions or an MRI suggestive of an adverse reaction to metal debris (ARMD). There was no evidence of component malposition or impingement. Frank staining of tissues together with high volume dark brown fluid collections were found in all cases. All stems and cups were well fixed. In 4 cases pubic and ischial lysis (adjacent to the inferior fins) was observed. All 7 cases had radiological, intraoperative and histological evidence of ARMD (Figure 1). The failure cohort had significantly higher whole blood cobalt ion levels and OHS (p = 0.001), but no significant difference in cup size (p = 0.77), gender predominance, stem offset or cup position (p = 0.12). Sleeves had been used in all revision cases. Wear analysis (n = 4) demonstrated increased wear at the trunnion/sleeve interface in a distribution compatible with micromotion (Figure 2). There was normal wear at the articulating surface. This series further demonstrates unacceptable failure rates in LHMOMTHR in a series where a compatible stem for the BHR modular head was used. Use of a CoCr sleeve within a CoCr head taper appears to contribute to abnormal wear and therefore potential ARMD and subsequent failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 3 - 3
1 Sep 2012
Langton D Ghandi J Sidaginamale R Mereddy P Joyce T Lord J Natu S Nargol A
Full Access

Introduction. We conducted independent wear analysis of retrieved metal on metal (MoM) hip components from around the world. All patients with resurfaced hips who developed adverse reactions to metal debris (ARMD) were found to have increased wear of the bearing surfaces. This was untrue in patients with large diameter (?36mm) MoM total hip replacements. This led us to search for other factors leading to ARMD. Methods. MoM THR explants retrieved from 78 patients suffering ARMD underwent full volumetric wear analysis of bearing surface and taper-junctions using coordinate measuring machine. Scanning electron microscopy (SEM) used to characterise material composition of specific areas. Results. 34 MoM THRs were found to have relatively low bearing surface wear (< 3mm. 3. /year). In each of these cases, material loss up to 60 microns wear depth was identified on the internal taper-junctions of femoral components. However, volumetric loss was rarely >5mm. 3. Similarly only 65% of metal ion levels of these patients were found to be greater than the MHRA guidance figure (7µg/L). Patterns of material loss at the tapers were consistent with antero-posterior force splaying open the taper-junction. This characteristic pattern was identified in number of commercially available devices (titanium and cobalt chromium stems). Soft tissue lesions were severe in patients found to have taper damage. Histology confirmed severe ALVAL with lymphoid neogenesis in majority cases, suggesting that wear debris from taper junctions may have greater potential to stimulate adverse immune response. Discussion. The results suggest that forces transmitted from large diameter hard-on-hard bearing surfaces are sufficient to cause mechanical damage to modular junctions with secondary localised corrosion. We urge caution in the use of these designs and recommend a re-evaluation of the stem head interface


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 7 - 7
1 Sep 2012
Gandhi J Sidaginamale R Mereddy P Langton D Joyce T Lord J Natu S Nargol A
Full Access

Background. The failure and subsequent withdrawal of the ASR device in both its resurfacing and THR form has been well documented. The National Joint Registry report of 2010 quoted figures of 12–13% failure at five years. Adverse reaction to metal debris (ARMD) is a poorly understood condition and patients developing severe metal reactions may go unrecognised for sometime. Patients and Methods. In 2004 a single surgeons prospective study of the ASR bearing surface was undertaken. We present the ARMD failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Mean follow up was 52 months (24–81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated “failure” if the patient had undergone revision surgery or if the patient had been listed. A second survival analysis was carried out with a failure defined as a serum cobalt > 7µg/L. Full explant analysis was carried out for retrieved prostheses. Results. There were 505 ASR patients in total. 657 metal ion samples were available at the time of writing (152 repeats). Survival analysis using revision/listed as end point (at 6 years):. ASR resurfacing: 26.1% failure. ASR THR: 55.5% failure. Survival using ion analysis (at 5 years):. ASR resurfacing: 50.1% failure. ASR THR: 66.5% failure. The median (range) volumetric wear rate of failed prosthesis was 8.23mm. 3. /year (0.51–95.5). Conclusion. A number of design flaws in the ASR has led to excessive wear of the bearing & taper leading to catastrophic failure secondary to ARMD


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 21 - 21
1 Apr 2017
Brooks P
Full Access

It's easy to say that hip resurfacing is a failed technology. Journals and lay press are replete with negative reports concerning metal-on-metal bearing failures, destructive pseudotumors, withdrawals and recalls. Reviews of national joint registries show revision risks with hip resurfacing exceeding those of traditional total hip replacement, and metal bearings fare worst among all bearing couples. Yet, that misses the point. Modern hip resurfacing was never meant to replace total hip replacement (THR). It was intended to preserve bone in young patients who would be expected to need multiple revisions due to their youth and high-demand activities. The stated goal of the developers of the Birmingham Hip Resurfacing (BHR) was to delay THR by 10 years. In the two decades that followed the release of BHR, this goal has been met and exceeded. Much has been learned about indications, patient selection, and surgical technique. We now know that this highly specialised, challenging procedure is best indicated in the young, active male with osteoarthritis, as a complementary, not competitive procedure, to THR. Resurfacing has many advantages. First and foremost, it saves bone, on the day of surgery, and over the next several years by preventing stress shielding. Dislocations are very rare. Leg length discrepancy and changes in offset are avoided. Post-operative activity, including heavy manual labor and contact sports, is unrestricted. More normal loading of the femur and joint stability has allowed professional athletes to regain their careers. Femoral side revisions, if necessary, are simple total hips, and dual mobility constructs allow one to keep the socket. Adverse reactions to metal debris (ARMD), including pseudotumors, have generated great concern. Initially described only in women, it was unclear whether the etiology was allergy, toxicity, or inflammation. A better understanding of the wear properties of the bearing, and its relation to size, anteversion, hip dysplasia and metallurgy, along with retrieval analysis, allow us to conclude that it is excessive wear due to edge loading which is the fundamental mechanism for the vast majority of ARMD. Thus, patient selection, implant selection and surgical technique, the orthopaedic triad, are paramount. What has been most impressive are the truly exceptional results in young, active men. The worst candidates for THR turn out to be the best candidates for resurfacing. The ability to return to full, unrestricted activity is just as important to these patients as the spectacular survivorship in centers specializing in resurfacing. If they are unlucky and face a revision, they are not facing the life-changing outcomes of a long revision femoral stem. So if the best indication for hip resurfacing is the young, active male, let's look at the results of resurfacing these patients in centers with high volumes, using devices with a good track record, such as BHR. Several centers around the world report 10–18 year success rates of BHR in males under 50 at 98–100%. Return to athletics is routinely achieved, and even professional athletes have regained their careers. Hip resurfacing doesn't have to be better than THR to be popular among patients. Just the idea of saving all that bone makes it attractive. In the young active male, however, the results exceed those of THR, while leaving better revision options for the future. This justifies its continued use in this challenging patient population


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 25 - 25
1 Apr 2017
Lombardi A
Full Access

Total hip arthroplasty (THA) performed in patients aged 60 years and younger requires several decades of implant use under increased activity demands. Implant longevity and stable fixation are necessary for 30 or more years. The search for the optimal bearing combination for use in younger, high demand patients presents a challenge for orthopaedic surgeons as they consider the pros and cons of each material and interaction. A recent U.S. study of implant utilization trends that included 174 hospitals and 105,000 THA between 2001 and 2012 found that in 2012 93% of THA were cementless and 35% of THA bearings were ceramic-on-highly crosslinked polyethylene (HXLPE). Another recent article used the Nationwide Inpatient Sample from 2009 to 2012 to study bearing usage trends in 9265 primary THA in patients 30 years old or younger. The researchers observed ceramic-on-polyethylene as the most commonly bearing surface, used in 36% of patients, and which represented an increase from an earlier study of extremely young patients undergoing primary THA between 2006 to 2009, use of so-called hard-on-hard bearings decreased. Benefits of ceramic-on-HXLPE bearings are that unlike metal-on-polyethylene and metal-on-metal combinations, taperosis and adverse reactions to metal debris are non-existent. Ceramic-on-polyethylene is forgiving, it is an extremely low wear couple, it is the current presenter's bearing of choice in high demand patients, and it is a good option in the scenario of revision of failed metal-on-metal or for taperosis. Advantages to bulk ceramics are: extremely hard and scratch resistant to third body wear, not damaged by instruments and repositioning, excellent wettability, extreme low wear against itself with no known pathogenic reaction to ceramic particles, inherently stable with no oxidation or aging effect, no corrosion, safe in terms of metal ion release, no known risk of hypersensitivity or allergy, and no concerns about biological reaction. Biolox® (Ceramtec AG; Plochingen, Germany) ceramics have been available since 1974, with fourth generation Biolox® Delta introduced in 2003. Extensive clinical experience includes over 1630 published studies with over 12 million Biolox® components implanted with almost every available hip system. Two recent meta-analyses studies of randomised controlled trials comparing ceramic-on-ceramic to ceramic-on-polyethylene found significantly higher linear wear in ceramic-on-polyethylene but higher incidences of noise and fracture in ceramic-on-ceramic THA. There were no differences in revision, function, dislocation, osteolysis or loosening. A recent meta-analysis review of randomised controlled trials reporting survivorship of ceramic-on-ceramic, ceramic-on-HXLPE, and metal-on-HXLPE found no difference among bearing surfaces in risk of revision after primary THA in patients younger than 65. Risk ratio for revision was 0.65 (p=0.50) between ceramic-on-ceramic and ceramic-on-HXLPE, and 0.40 (p=0.34) between ceramic-on-ceramic and metal-on-HXLPE. A recent study of ceramic-on-HXLPE bearings for 130 cementless THA in 119 patients younger than 50 years at mean follow-up of 8.3 years (range, 7–9) reported a mean post-operative Harris hip score of 94, UCLA activity score of 8.1, no acetabular revisions, no osteolysis, no head or liner fracture, and 0.022 ± 0.003 mean annual penetration rate of the femoral head. While longer follow-up is necessary, ceramic-on-HXLPE bearings are an attractive option in younger, high demand patients undergoing primary THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 139 - 139
1 May 2016
Pritchett J
Full Access

BACKGROUND. We originally performed metal-on-metal hip resurfacing using a Townley designed Vitallium Total Articular Replacement Arthroplasty (TARA) curved stemmed prosthesis. Neither the acetabular or femoral components were cemented or had porous coating. The bearing surfaces were consistently polar bearing. The surgical objectives were to preserve bone stock, maintain normal anatomy and mechanics of the hip joint and to approximate the normal stress transmission to the supporting femoral bone. The functional objectives were better sports participation, less thigh pain and limp, less perception of a leg length difference and a greater perception of a normal hip. Metal-on-metal was selected to conserve acetabular bone and avoid polyethylene associated osteolysis. Relatively few cases were performed until the Conserve Plus and later the Birmingham Hip Resurfacing systems became available. METHODS. We examined the results of metal-on-metal hip resurfacing in patient with at least 10 years of follow-up and an age less than 50 at the time of surgery. We did not have access to the Birmingham Prosthesis until 2006. We performed 101 TARA procedures and 397 Conserve Plus procedures for 357 patients. For the combined series the mean age was 43 and 62% of patients were male. 34 patients had a conventional total hip replacement on the contralateral side. We used both the anterolateral and posterior approaches. All acetabular components were placed without cement and all the Conserve Plus Femoral Components were cemented. RESULTS. There were no implant related failures with the TARA prosthesis. The average Harris Hip Score was 93. There were 2 revisions for femoral neck fracture at years 8 and 14 and one revision for infection. There was one dislocation but no instance of implant loosening. There were 29 (7%) revisions with the Conserve Plus Prosthesis. 14 revisions were for adverse reactions to metal wear debris and 10 of these patients had femoral components of size 46 mm or smaller. There were 5 revisions for acetabular loosening and 3 for femoral loosening. There were 7 revisions for femoral neck fracture and infection. The limb lengths were measured to be within 1 cm of equal in 98% of patients. 95% of patients had a UCLA activity score above 6 and 96% of patients rated their outcome excellent or good. 32 of 34 patients preferred their hip resurfacing to total hip replacement. The Kaplan-Meier survivorship was 93%. Narrowing of the femoral neck was seen in 9% of patients but acetabular osteolysis was not seen. Signs of impingement of the femoral neck against the acetabular prosthesis were seen in 14% of patients. CONCLUSIONS. Metal-on-metal hip resurfacing has been performed for more than 40 years using predicate prostheses such as the Townley TARA. The results of metal-on-metal resurfacing are favorable even in young and very active individuals. There were no instances of medical illness related to metal-on-metal implants with up to 41 years of follow-up. Metal-on-metal hip resurfacing has favorable outcomes at 10 years. There is an increased chance of an adverse reaction to metal wear debris with femoral component sizes 46 mm or smaller


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 64 - 64
1 May 2016
Campbell P Nguyen M Priestley E
Full Access

The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded modular connections. We reviewed the evaluation and reporting of local tissue reactions over time, and asked if a dose response has been found between metal and tissue features, and how the use of more standardized terms and quantitative methodologies could reduce the current confusion in terminology. Methods. The PubMed database was searchedbetween 2000 and 2015 for papers using “metal sensitivity /allergy /hypersensitivity, Adverse Local Tissue Reaction (ALTR): osteolysis, metallosis, lymphocytic infiltration, Aseptic Lymphocytic Vasculitis-Associated Lesions (ALVAL), Adverse Reaction to Metal Debris (ARMD) or pseudotumor/ pseudotumour” as well as metal-on-metal / metal-metal AND hip arthroplasty/replacement. Reports lacking soft tissue histological analysis were excluded. Results. 131 articles describing M-M tissue histology were found. In earlier studies, the terms metal sensitivity / hypersensitivity /allergy implied or stated the potential for a Type IV delayed type hypersensitivity response as a reason for revision. More recently those terms have largely been replaced by broader terms such as ALTR, ALVAL and ARMD. ALVAL and metal hypersensitivity were often used interchangeably, both as failure modes and histological findings. Several histology scoring systems have been published but were only used in a limited number of studies. Correlations of histological features with metal levels or component wear were inconclusive, typically because of a high degree of variability. Interestingly, there were very few descriptions that concluded that the observed reactions were benign / normal or anticipated i.e. regardless of the histological features, extent of debris or failure mode, the histology was interpreted as showing an adverse reaction. Discussion. There is now an expanded set of terms to describe tissues but they lack clear definitions and typically do not use quantitative histological data to describe a wide range of periprosthetic reactions to metal. Lower limits of inflammation, necrosis or re-organization that represent a “normal” reaction to surgery and/or small amounts of wear debris are not clearly defined and are rarely discussed. The widespread adoption of the term “adverse” in the present tissue lexicon implies a cause and effect relationship between metal wear and corrosion products and histological features even though this has yet to be determined. The use of quantitative histological scores rather than subjective histological descriptions is imperative to improve the understanding and reporting of the range of periprosthetic reactions. In particular, a new lexicon that allows for a level of tissue reaction that is not misinterpreted as adverse is required


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 28 - 28
1 Jan 2013
Langton D Sidaginamale R Lord J Joyce T Natu S Nargol A
Full Access

Background. Previous studies have suggested that the modular junction of metal on metal (MoM) total hip replacements (THR) is an important source of metallic debris. Methods. We carried out a prospective study using custom techniques to analyse one of the largest collections of failed contemporary MoM devices in the world. All explants from patients who had suffered adverse reactions to metal debris (ARMD) were included in this study. These explants included: 82 36mm THRs, and 147 resurfacing head THRs and 140 resurfacing arthroplasties from several manufactures. Volumetric wear analysis of the bearing surfaces and taper junctions was carried out using a coordinate measuring machine. The relationships between total metallic loss and metal ion concentrations and the macroscopic and histological tissue appearance of THR patients were compared to those in resurfacing patients. Mann Whitney test for non-parametric data was used to assess significant differences between groups. Results. Resurfacing explants retrieved from patients who had suffered ARMD were found to have significantly higher median rates of volumetric wear than the THRs (10.16 versus 2.25mm. 3. /yr (p < 0.001)). Total volumetric material loss from taper junctions ranged from 0.01 to 21.55mm. 3. When volumetric taper wear was combined with bearing surface wear in the THR patients this total rate of material loss was still significantly less than in the resurfacing patients 2.52 versus 10.16mm. 3. /yr (p < 0.001)). Despite this, macroscopic tissue destruction and extent of ALVAL infiltration was found to be significantly greater in the THR patients. Conclusion. Taper debris appears to more readily stimulate a destructive immune cascade than debris from primary bearing surfaces. This cascade can culminate in catastrophic tissue necrosis when blood metal ion concentrations appear normal. MHRA guidance should distinguish clearly between MOM THRs and resurfacings