Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 134 - 134
1 Jul 2014
Cai Y Li J Tan H Thian E Fuh JH Tay B Wang W
Full Access

Summary Statement. A three dimensional meniscal scaffold with controlled fibre diameter and orientation was fabricated by an improved E-Jetting system that mimic the internal structure of natural meniscus. In vitro cellular tests proved its feasibility in meniscal tissue engineering applications. Introduction. Current surgical and repair methods for complex meniscal injuries still do not often give satisfactory long-term results. Thus, scaffold-based grafts are the subject of much research interest. However, one major hurdle is that current techniques are unable to replicate the precise 3D microstructure of meniscus, nor the variations in the fibrillar structure and tissue content from layer to layer. In this work, an improved electrohydrodynamic jet printing system (E-Jetting system) was developed to fabricate biomimetic meniscal scaffold for tissue regeneration. Methods. Polycaprolactone (PCL) and ACS reagent grade acetic acid were purchased from Sigma-Aldrich. 70% w/v PCL solution was prepared by dissolving polymer in acetic acid. A customised hydrodynamic E-Jetting system was employed to fabricate the scaffold. Scaffold topography was observed by optical microscope (OM) and scanning electron microscope (SEM). Chondrocytes were used to evaluate the in vitro biological properties of scaffolds, including cell viability, sulfated glycosaminoglycan (sGAG) production, as well as gene expression of chondrogenic markers. Mechanical testing was also performed on the scaffolds with and without cell loading. Results. Meniscal scaffolds of specific fiber orientation were fabricated in a single fabrication run at room temperature. These scaffolds were printed with circumferentially oriented PCL fibers interspersed with radial fibers, which mimic the internal structure of the natural meniscus. In vitro cell culture tests demonstrated that chondrocytes attached and spread well on the scaffolds, and produced significant extracellur matrix of cartilage (sGAG and collagen type II). Mechanical test was conducted on the meniscus scaffolds. Significantly enhanced tensile strength was seen on cell-laden scaffolds compared with that without cells. Discussion/Conclusion. The three dimensional meniscal scaffold with controlled fibre diameter and orientation fabricated by the improved E-Jetting system was able to approach the internal structure of natural meniscus. Chondrocytes attached and spread well on the scaffolds, maintained their healthy phenotypes within the scaffold, and produced cartilage-like extracelluar matrix. Cell loading further enhanced the mechanical strength of scaffolds and replicated the anisotropic mechanical property of natural meniscus. It is proposed that the E-jetted meniscal scaffold has the potential for future applications in meniscal replacement therapeutic options


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 2 - 2
1 Apr 2014
Brydone A Prodanov L Lamers E Gadegaard N Jansen J Walboomers X
Full Access

Titanium is a popular orthopaedic implant material, but it requires surface modification techniques to improve osseointegration and long term functionality. This project compares a new method of modifying surface topography (nano-patterning) with an existing clinical technology (grit-blasting and acid-etching (GAE)). Titanium discs were blasted with aluminium oxide and etched in sulphuric and acetic acid. Injection moulded discs (with two different nano-patterns) were coated in titanium by evaporation. The topography and chemistry of the discs was assessed using atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle measurements, and X-ray photo-electron spectroscopy (XPS). Two discs were plated bilaterally onto a flattened area of the tibiae of 12 rabbits. Tibiae were removed after 4 and 8 weeks for histological assessment of the bone-implant contact (BIC) ratio. AFM and SEM demonstrated a difference in pattern between the square array of nano-pits (SQ) and the randomly positioned nano-pits (RAND). The GAE implants exhibited increased surface roughness (Ra = 570nm) compared to the titanium coated SQ and RAND implants (Ra = 12nm). Water contact angle measurements showed the surface had comparable wettability and XPS demonstrated similar chemical compositions, except GAE surfaces contained 6.8% aluminium. Histological samples analysed at 4 weeks showed a BIC ratio of 36% for GAE, 56% for SQ, and 48% for RAND. At 8 weeks, the BIC ratio was 52% for GAE, 80% for SQ, and 72% for RAND implants. This increase in BIC at 8 weeks for both SQ and RAND implants compared to GAE was statistically significant (P < 0.05). This project demonstrated there was an increase in interfacial bone to implant contact when using a nano-scale topography incorporating nano-pits compared to conventional grit-blasted acid-etched micro-scale topographies. This enhancement of BIC may reduce long term loosening of orthopaedic implants due to mechanical and biological attrition at the interface


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1575 - 1580
1 Nov 2013
Salai M Somjen D Gigi R Yakobson O Katzburg S Dolkart O

We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (sd 20)), compared with metformin 10 µg/ml (185% (sd 10)), metoprolol 0.25 µg/ml (190% (sd 20)), citalopram 0.05 µg/ml (150% (sd 10)) and omeprazole 0.001 µg/ml (145% (sd 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (sd 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis.

Cite this article: Bone Joint J 2013;95-B:1575–80.


Bone & Joint Research
Vol. 3, Issue 8 | Pages 252 - 261
1 Aug 2014
Tilley JMR Murphy RJ Chaudhury S Czernuszka JT Carr AJ

Objectives

The effects of disease progression and common tendinopathy treatments on the tissue characteristics of human rotator cuff tendons have not previously been evaluated in detail owing to a lack of suitable sampling techniques. This study evaluated the structural characteristics of torn human supraspinatus tendons across the full disease spectrum, and the short-term effects of subacromial corticosteroid injections (SCIs) and subacromial decompression (SAD) surgery on these structural characteristics.

Methods

Samples were collected inter-operatively from supraspinatus tendons containing small, medium, large and massive full thickness tears (n = 33). Using a novel minimally invasive biopsy technique, paired samples were also collected from supraspinatus tendons containing partial thickness tears either before and seven weeks after subacromial SCI (n = 11), or before and seven weeks after SAD surgery (n = 14). Macroscopically normal subscapularis tendons of older patients (n = 5, mean age = 74.6 years) and supraspinatus tendons of younger patients (n = 16, mean age = 23.3) served as controls. Ultra- and micro-structural characteristics were assessed using atomic force microscopy and polarised light microscopy respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 270 - 275
1 Feb 2006
Orhan Z Cevher E Mülazimoglu L Gürcan D Alper M Araman A Özsoy Y

Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated.

The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres.

The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation.

Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1660 - 1665
1 Dec 2006
Surendran S Kim SH Jee BK Ahn SH Gopinathan P Han CW

We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis.

We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1157 - 1163
1 Aug 2005
Peter B Zambelli P Guicheux J Pioletti DP

In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which osteoblasts could be safely exposed.

Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μm. Murine cells can be exposed to concentrations as high as 10 μm.

A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 730 - 735
1 May 2005
Sharpe JR Ahmed SU Fleetcroft JP Martin R

In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel.

The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.