Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

ENHANCED OSSEOINTEGRATION ON RABBIT TIBIAE USING TITANIUM COATED NANO-PATTERNED IMPLANTS

Glasgow Meeting of Orthopaedic Research (GLAMOR)



Abstract

Titanium is a popular orthopaedic implant material, but it requires surface modification techniques to improve osseointegration and long term functionality. This project compares a new method of modifying surface topography (nano-patterning) with an existing clinical technology (grit-blasting and acid-etching (GAE)).

Titanium discs were blasted with aluminium oxide and etched in sulphuric and acetic acid. Injection moulded discs (with two different nano-patterns) were coated in titanium by evaporation. The topography and chemistry of the discs was assessed using atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle measurements, and X-ray photo-electron spectroscopy (XPS). Two discs were plated bilaterally onto a flattened area of the tibiae of 12 rabbits. Tibiae were removed after 4 and 8 weeks for histological assessment of the bone-implant contact (BIC) ratio.

AFM and SEM demonstrated a difference in pattern between the square array of nano-pits (SQ) and the randomly positioned nano-pits (RAND). The GAE implants exhibited increased surface roughness (Ra = 570nm) compared to the titanium coated SQ and RAND implants (Ra = 12nm). Water contact angle measurements showed the surface had comparable wettability and XPS demonstrated similar chemical compositions, except GAE surfaces contained 6.8% aluminium.

Histological samples analysed at 4 weeks showed a BIC ratio of 36% for GAE, 56% for SQ, and 48% for RAND. At 8 weeks, the BIC ratio was 52% for GAE, 80% for SQ, and 72% for RAND implants. This increase in BIC at 8 weeks for both SQ and RAND implants compared to GAE was statistically significant (P < 0.05).

This project demonstrated there was an increase in interfacial bone to implant contact when using a nano-scale topography incorporating nano-pits compared to conventional grit-blasted acid-etched micro-scale topographies. This enhancement of BIC may reduce long term loosening of orthopaedic implants due to mechanical and biological attrition at the interface.