The angle of acetabular inclination is an important measurement in total hip replacement (THR) procedures. Determining the acetabular component orientation intra-operatively remains a challenge. An increasing number of innovators have described techniques and devices to achieve it. This paper describes a mechanical inclinometer design to measure intra-operative
Introduction. Aseptic loosening of the
Abstract. Objectives. The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data. Methods. Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms. −1. and 0.85(SD 0.08)ms. −1. respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups. Results. Over a gait cycle the mean minimum, maximum and average version angles for the high-functioning group were −4.5(SD 4.4)°, 5.0(SD 4.3)°, 9.5(SD 4.0)° and for low-functioning group 2.0(SD 3.7)°, 6.2(SD 2.9)°, 8.1(SD 3.2)°. There were no significant differences for the minimum, maximum and average version angles between the two groups. Conclusions. The study shows that dynamic
Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the
Metal on metal press-fit
Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings.
Introduction. Durable bone fixation of uncemented porous-coated
Background. Complications such as dislocations, impingement and early wear following total hip arthroplasty (THA) increase with
Ten
Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the
Non-optimal clinical alignment of components in total hip replacements (THRs) may lead to edge loading of the
Background. The R3 cementless acetabular system (Smith & Nephew, Memphis, Tennessee, United States) is a modular titanium shell with an asymmetric porous titanium powder coating. It supports cross-linked polyethylene, metal and ceramic liners with several options for the femoral head component. The R3 cup was first marketed in Australia and Europe in 2007. Two recent papers have shown high failure rates of the MoM R3 system with up to 24% (Dramis et al 2014, Hothi et al 2015). There are currently no medium term clinical papers on the R3
Summary Statement. The circle theorem is a simple and effective measurement tool for estimating acetabular version after total hip arthroplasty. Introduction. Position of the
In order to reduce the risk of dislocation larger femoral heads in total hip arthroplasty (THA) are being used by surgeons in recent years. The standard head size of 28 mm used in 73% of all hip procedures in 2003 was used in only 29% in 2016; whereas head sizes of 32 mm and 36 mm combined, were used in 70%. The increase of head size effectively reduces the thickness of the
During revision THR, the surgery is often difficult and compromised due to lack of patient's bone especially in the pelvis. Any extra bone in the acetabulum is expected to be of advantage to the patient and the surgeon. The aim of this study was to see if preservation of medial acetabular osteophyte in uncemented total hip replacement had any adverse effect on the prosthesis survival or patient satisfaction. Conventional acetabular preparation involves reaming down to the true floor. This not only medialises the centre of rotation of the hip but also reduces the acetabular offset. In contrast the main surgeon preserved the acetabular offset by preserving some osteophytic bone between the true floor of the acetabulum and the
Abstract. Background. Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation, impingement, abductor muscle strength and range of motion. Transverse acetabular ligament (TAL) and posterior labrum have been shown to be a reliable landmark to guide optimum
Preoperative planning for Total Hip Arthroplasty has been acknowledged as a vital step to facilitate a successful outcome. Templating ascertains the dimensions and positioning of the implants, minimizing both intraoperative and postoperative complications. The purpose of this study is to compare the accuracy of digital templating to acetate templating in the preoperative planning of Total Hip Arthroplasty. Preoperative planning was performed on 40 consecutive patients (mean age = 70.5 years), undergoing Total Hip Arthroplasty. Digital templating was performed by the Hip fellow 1, using Orthoview software (Jacksonville, FL, USA) and recorded the sizes of the cup and stem for each of the 40 patients. Subsequently, the same 40 patients were templated by Hip fellow 2, with X-rays done with a lead marker of known size by the side of the femur, using, acetate templating method. Templating results were compared to the actual sizes of the implants used, as noted in operative notes. Templating scores for the
Background. The position of the hip-joint centre of rotation (HJC) within the pelvis is known to influence functional outcome of total hip replacement (THR). Superior, lateral and posterior relocations of the HJC from anatomical position have been shown to be associated with greater joint reaction forces and a higher incidence of aseptic loosening. In biomechanical models, the maximum force, moment-generating capacity and the range of motion of the major hip muscle groups have been shown to be sensitive to HJC displacement. This clinical study investigated the effect of HJC displacement and
Background. The worldwide withdrawal of the DePuy Articular Surface Replacement (ASR) device in both its resurfacing and total hip replacement (THR) form on 26 August 2010, after 93,000 were implanted worldwide, has had major implications. The 2010 National Joint Registry for England and Wales quoted figures of 12-13% failure at five years; however these figures may be an underestimate. Patients and methods. In 2004 a single surgeon prospective study of the ASR bearing surface was undertaken. Presented are the Adverse Reaction to Metal Debris (ARMD) failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision.
Wear debris induced osteolysis is a recognized complication in conventional metal-on-polyethylene hip arthroplasty. One method of achieving wear reduction is through the use of metal-on-metal articulations. One of the latest manifestations of this biomaterial combination is in designs of hip resurfacing which are aimed at younger, more active patients. But, do these metal-on-metal hip resurfacings show low wear when implanted into patients?. Using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy less than 1 micron) and a bespoke computer program, volumetric wear measurements for retrieved Articular Surface Replacements (ASR, DePuy) metal-on-metal hip resurfacings were undertaken. Measurements were validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was shown to be accurate to within 0.5mm3. Thirty-two femoral heads and twenty-two