Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major
Contemporary acetabular reconstruction in major
The advent of modular porous metal augments has ushered in a new form of treatment for
Aims. Severe
Hemispheric, porous-ingrowth revision acetabular components (generally with multiple screw fixation) have demonstrated versatility and durability over 25 years. Jumbo cups (minimum diameter of 62mm in women, 66mm in men, or 10mm larger than the normal contralateral acetabulum) are utilised in the majority of revisions with
Purpose:.
Introduction: Treatment of acetabular defects can be difficult, especially in case of roof destruction. Since 9 years, we use a variant of Paprosky’s technique which consists in rebuilding the roof by structural allograft and acetabular reinforcement ring. The purpose of this study is to present this technique and the follow up results. Patients: This retrospective study concerns 21 patients (23 hips) with severe
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
Introduction: The management of periprosthetic osteolysis is a challenging problem in revision hip arthroplasty. Filling acetabular bone defects with structural allografts resulted in early failure due to resorption of the graft. The application in combination with reinforcement rings should promote bone incorporation as a result of reduced mechanical stresses. This study evaluates the long-term results in the treatment of acetabular deficiencies using bulk allografts supported with a Burch-Schneider Anti-Protrusio Cage (APC). Materials and Methods: From January 1992 to December 1995, 69 consecutive patients underwent revision surgery following periprosthetic osteolysis and aseptic loosening of the cup.
Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66mm in men and 62mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky Type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80%-96% at time frames from 15–20 years. The most common post-operative complication is dislocation.
Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3B) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2006 and 2014, sixteen patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all polyethylene cup was used. Preoperative diagnosis was aseptic loosening (10 cemented and 6 non-cemented). The femoral component was revised in 9 patients. Postoperative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete postoperative sciatic palsy. After a mean follow up of 40 months (24 to 104) none of the patients required re-revision. One asymptomatic patient presented with aseptic loosening 9 years postoperatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions for large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant make this technique an attractive option for these large defects. Longer follow-up is needed to assess survivability.
Impaction grafting is an excellent option for acetabular revision. It is technique specific and very popular in England and the Netherlands and to some degree in other European centers. The long term published results are excellent. It is, however, technique dependent and the best results are for contained cavitary defects. If the defect is segmental and can be contained by a single mesh and impaction grafting, the results are still quite good. If, however, there is a larger segmental defect of greater than 50% of the acetabulum or a pelvic discontinuity, other options should be considered. Segmental defects of 25–50% can be managed by minor column (shelf) or figure of 7 structural allografts with good long term results. Porous metal augments are now a good option with promising early to mid-term results. Segmental defects of greater than 50% require a structural graft or porous augment usually protected by a cage. If there is an associated pelvic discontinuity then a cup cage is a better solution. An important question is does impaction grafting facilitate rerevision surgery? There is no evidence to support this but some histological studies of impacted allograft would suggest that it may. On the other hand there are papers that show that structural allografts do restore bone stock for further revision surgery. Also the results of impaction grafting are best in the hands of surgeons comfortable with using cement on the acetabular side, and one of the reasons why this technique is not as popular in North America.
To introduce and promote a new technic and a new component using the 3D technology in the extreme acetabular revisions. Since 2012, 13 patients, nine women and four men, were treated, 12 for a chronic complex PJI and one for an aseptic loosening. The average age was 75 years old (60 -90 years), the average follow-up 18,6 months (7–36 months). The revisions were bipolar in 12 cases and unipolar in one case for the oldest patient. For the septic cases, we performed 7 one stage procedure and 5 two stages. The femoral components were in 7 cases a modular stem, in 5 cases a massive component and a total femur. All these massive components were combined with a cemented double cup. The bone loss was evaluated with the AAOS, the Praposky and the Saleh classifications. A preoperative and postoperative Oxford score was used.Aim
Method
Pelvic discontinuity with associated bone loss is a complex challenge in acetabular revision surgery. Reconstruction using ilio-ischial cages combined with trabecular metal acetabular components and morsellised bone (the component-cage technique) is a relatively new method of treatment. We reviewed a consecutive series of 26 cases of acetabular revision reconstructions in 24 patients with pelvic discontinuity who had been treated by the component-cage technique. The mean follow-up was 44.6 months (24 to 68). Failure was defined as migration of a component of >
5 mm. In 23 hips (88.5%) there was no clinical or radiological evidence of loosening at the last follow-up. The mean Harris hip score improved significantly from 46.6 points (29.5 to 68.5) to 76.6 points (55.5 to 92.0) at two years (p <
0.001). In three hips (11.5%) the construct had migrated at one year after operation. The complications included two dislocations, one infection and one partial palsy of the peroneal nerve. Our findings indicate that treatment of pelvic discontinuity using the component-cage construct is a reliable option.
Aims. It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. Methods. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion. Results. In total, 139 patients were included. Increased spinopelvic motion was observed in patients with loss of femoral head contour, cam deformity, and
Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe
Instability and aseptic loosening are the two main complications after revision total hip arthroplasty (rTHA). Dual-mobility (DM) cups were shown to counteract implant instability during rTHA. To our knowledge, no study evaluated the 10-year outcomes of rTHA using DM cups, cemented into a metal reinforcement ring, in cases of severe