Hip abductor tears(AT) have long been under-recognized, under-reported and under-treated. There is a paucity of data on the prevalence, morphology and associated factors. Patients with “rotator cuff tears of the hip” that are recognized and repaired during total hip arthroplasty(THA) report comparable outcomes to patients with intact abductor tendons at THA. The study was a retrospective review of 997 primary THA done by a single surgeon from 2012–2022. Incidental findings of AT identified during the anterolateral approach to the hip were documented with patient name, gender, age and diagnosis. The extent and size of the tears of the Gluteus medius and Minimus were recorded. Xrays and MRI's were collected for the 140 patients who had AT and matched 1:1 with respect to age and gender against 140 patients that had documented good muscle quality and integrity. Radiographic measurements (Neck shaft angle, inter-teardrop distance, Pelvis width, trochanteric width and irregularities, bodyweight moment arm and abductor moment arm) were compared between the 2 groups in an effort to determine if any radiographic feature would predict AT. The prevalence of AT were 14%. Females had statistically more tears than males(18vs10%), while patients over the age of 70y had statistically more tears overall(19,7vs10,4%), but also more Gluteus Medius tears specifically(13,9vs5,3%). Radiographic measurements did not statistically differ between the tear and control group, except for the presence of trochanteric irregularities. MRI's showed that 50% of AT were missed and subsequently identified during surgery.
Complete or nearly complete disruption of the attachment of the gluteus is seen in 10–20% of cases at the time of THA. Special attention is needed to identify the lesion at the time of surgery because the avulsion often is visible only after a thickened hypertrophic trochanteric bursa is removed. From 1/1/09 to 12/31/13, 525 primary hip replacements were performed by a single surgeon. After all total hip components were implanted, the greater trochanteric bursa was removed, and the gluteus medius and minimus attachments to the greater trochanter were visualised and palpated. Ninety-five hips (95 patients) were found to have damage to the muscle attachments to bone. Fifty-four hips had mild damage consisting of splits in the tendon, but no frank avulsion of abductor tendon from their bone attachments. None of these cases had severe atrophy of the abductor muscles, but all had partial fatty infiltration. All hips with this mild lesion had repair of the tendons with #5 Ticron sutures to repair the tendon bundles together, and drill holes through bone to anchor the repair to the greater trochanter. Forty-one hips had severe damage with complete or nearly complete avulsion of the gluteus medius and minimus muscles from their attachments to the greater trochanter. Thirty-five of these hips had partial fatty infiltration of the abductor muscles, but all responded to electrical stimulation. The surface of the greater trochanter was denuded of soft tissue with a rongeur, the muscles were repaired with five-seven #5 Ticron mattress sutures passed through drill holes in the greater trochanter, and a gluteus maximus flap was transferred to the posterior third of the greater trochanter and sutured under the vastus lateralis. Six hips had complete detachment of the gluteus medius and minimus muscles, severe atrophy of the muscles, and poor response of the muscles to electrical stimulation. The gluteus medius and minimus muscles were sutured to the greater trochanter, and gluteus maximus flap was transferred as in the group with functioning gluteus medius and minimus muscles. Postoperatively, patients were instructed to protect the hip for 8 weeks, then abductor exercises were started. The normal hips all had negative Trendelenburg tests at 2 and 5 years postoperative with mild lateral hip pain reported by 11 patients at 2 years, and 12 patients at 5 years. In the group of 54 with mild abductor tendon damage that were treated with simple repair, positive Trendelenburg test was found in 5 hips at 2 years and in 8 hips at 5 years. Lateral hip pain was reported in 7 hips at 2 years, and in 22 at 5 years. In the group of 35 hips with severe avulsion but good muscle tissue, who underwent repair with gluteus maximus flap transfer, all had good abduction against gravity and negative Trendelenburg tests at 2 and 5 years postoperative, and none had lateral hip pain. Of the 6 hips with complete avulsion and poor muscle who underwent abductor muscle repair and gluteus maximus flap transfer, all had weak abduction against gravity, mildly positive Trendelenburg sign, and mild lateral hip pain at 2 and 5 years postoperative.
Purpose. To determine the effect of early recovery with 2 different MIS THA for patients with dysplastic hip because of relatively severe muscle weakness before surgery. Materials & Methods. MIS THA (248 MIS A/L, 96 2-incision) were performed with single surgeon from 2002. Averaged age was 61 years old.
No animal model currently exists for hip abductor tendon tears. We aimed to 1. Develop a large animal model of delayed abductor tendon repair and 2. To compare the results of acute and delayed tendon repair using this model. Fourteen adult Romney ewes underwent detachment of gluteus medius tendon using diathermy. The detached tendons were protected using silicone tubing. Relook was performed at six and 16 weeks following detachment, histological analysis of the muscle and tendon were performed. We then attempted repair of the tendon in six animals in the six weeks group and compared the results to four acute repairs (tendon detachment and repair performed at the same time). At 12 weeks, all animals were culled and the tendon–bone block taken for histological and mechanical analysis. Histology grading using the modified Movin score confirmed similar tendon degenerative changes at both six and 16 weeks following detachment. Biomechanical testing demonstrated inferior mechanical properties in both the 6 and 16 weeks groups compared to healthy controls. At 12 weeks post repair, the acute repair group had a lower Movin's score (6.9 vs 9.4, p=0.064), and better muscle coverage (79.4% of normal vs 59.8%). On mechanical testing, the acute group had a significantly improved Young's Modulus compared to the delayed repair model (57.5MPa vs 39.4MPa, p=0.032) A six week delay between detachment and repair is sufficient to produce significant degenerative changes in the gluteus medius tendon. There are significant histological and mechanical differences in the acute and delayed repair groups at 12 weeks post op, suggesting that a delayed repair model should be used to study the clinical problem.
Avulsion of the abductor muscles of the hip may cause severe limp and pain. Limited literature is available on treatment approaches for this problem, and each has shortcomings. This study describes a muscle transfer technique to treat complete irreparable avulsion of the hip abductor muscles and tendons. Ten adult cadaver specimens were dissected to determine nerve and blood supply point of entry in the gluteus maximus and tensor fascia lata (TFL) and evaluate the feasibility and safety of transferring these muscles to substitute for the gluteus medius and minimus. In this technique, the anterior portion of the gluteus maximus and the entire TFL are mobilised and transferred to the greater trochanter such that the muscle fiber direction of the transferred muscles closely matches that of the gluteus medius and minimus. Five patients (five hips) were treated for primary irreparable disruption of the hip abductor muscles using this technique between January 2008 and April 2011. All patients had severe or moderate pain, severe abductor limp, and positive Trendelenburg sign. Patients were evaluated for pain and function at a mean of 28 months (range, 18–60 months) after surgery. All patients could actively abduct 3 months post-operatively. At 1 year post-operatively, three patients had no hip pain, two had mild pain that did not limit their activity, three had no limp, and one had mild limp. One patient fell, fractured his greater trochanter, and has persistent limp and abduction weakness. The anterior portion of the gluteus maximus and the TFL can be transferred to the greater trochanter to substitute for abductor deficiency. In this small series, the surgical procedure was reproducible and effective; further studies with more patients and longer follow-up are needed to confirm this.
Hip abductor deficiency (HAD) associated with hip arthroplasty can be a chronic, painful condition that can lead to abnormalities in gait and instability of the hip. HAD is often confused with trochanteric bursitis and patients are often delayed in diagnosis after protracted courses of therapy and steroid injection. A high index of suspicion is subsequently warranted. Risk factors for HAD include female gender, older age, and surgical approach. The Hardinge approach is most commonly associated with HAD because of failure of repair at the time of index surgery or subsequent late degenerative or traumatic rupture. Injury to the superior gluteal nerve at exposure can also result in HAD and is more commonly associated with anterolateral approaches. Multiple surgeries, chronic infection, and chronic inflammation from osteolysis or metal debris are also risk factors especially as they can result in bone stock deficiency and direct injury to muscle. Increased offset and/or leg length can also contribute to HAD, especially when both are present. Physical exam demonstrates abductor weakness with walking and single leg stance. There is often a palpable defect over the greater trochanter and palpation in that area usually elicits significant focal pain. Note may be made of multiple incisions. Increased leg length may be seen. Radiographs may demonstrate avulsion of the greater trochanter or significant osteolysis. Significant polyethylene wear or a metal-on-metal implant should be considered as risk factors, as well as the presence of increased offset and/or leg length. Ultrasound or MRI are helpful in confirming the diagnosis but false negatives and positive results are possible. Treatment is difficult, especially since most patients have failed conservative management before diagnosis of HAD is made. Surgical options include allograft and mesh reconstruction as well as autologous muscle transfers. Modest to good results have been reported, but reproducibility is challenging. In the case of increased offset and leg length, revision of the components to reduce offset and leg length may be considered. In the case of significant instability, abductor repair may require constrained or multi-polar liners to augment the surgical repair. HAD is a chronic problem that is difficult to diagnose and treat. Detailed informed consent appropriately setting patient expectations with a comprehensive surgical plan is required if surgery is to be considered. Be judicious when offering this surgery.
We have looked at a single surgeons results for hip abductor repair in a population of patients and assessed them pre and post operatively. We collected data over a 2 year period and each patient underwent a telephone consultation and were scored both pre operatively and post operatively using the non-arthritic hip score (NAHS) and UCLA activity score (UCLA). A total of 15 patients were included in the study over a 2 year period. 93% underwent some form of investigation prior to surgery. Intra-operatively all patients were found to have pathological abductors. 9 patients were found to have partial avulsions of the abductors and the other 6 had under surface tears or detachments. The mean preoperative NAHS was 35.7/80 and >3/12 post operatively was 68.8/80 (p value <0.001). The mean preoperative UCLA score was 3.1/10 and >3/12 post operatively was 6.6/10 (p value <0.001). There is a statistically significant improvement in the NAHS of these patients as early as 3/12 and therefore early exploration is advised by the team. Surgical exploration is advised if the patient remains symptomatic despite having negative imaging results as this condition continues to go untreated despite the patients having a significant improvement post operatively.
Loss of the abductor portions of the gluteus medius and gluteus minimus muscles due to total hip arthroplasty (THA) causes severe limp and often instability. To minimise the risk of limp and instability the anterior half of the gluteus maximus was transferred to the greater trochanter and sutured under the vastus lateralis. A separate posterior flap was transferred under the primary flap to substitute for the gluteus minimus and capsule. To ensure tight repair, the flaps were attached and tensioned in abduction. The technique was performed in 11 patients (11 hips) with complete loss of abductor attachment; the procedure was performed in 9 patients during THA and in 2 later as a secondary procedure. Pre-operatively, all patients had abductor lurch, positive Trendelenburg sign, and no abduction of the hip against gravity. The follow up ranged from 16 to 42 months. Post-operatively, 9 patients had strong abduction of the hip against gravity, no abductor lurch, and negative Trendelenburg sign. One patient had weak abduction against gravity, negative Trendelenburg sign, and slight abductor lurch. One patient failed to achieve strong abduction, had severe limp after 6 months of protection and physical therapy, and was lost to follow up. Gluteus maximus transfer can restore abductor function in THA, but it is technically demanding and requires careful, prolonged rehabilitation.
Management of recurrent instability of the hip requires careful assessment to determine any identifiable causative factors. While plain radiographs can give a general impression, CT is the best methodology for objective measurement. Variables that can be measured include: prosthetic femoral anteversion, comparison to contralateral native femoral anteversion, total offset from the medial wall of the pelvis to the lateral side of the greater trochanter, comparison to total offset on the contralateral side, acetabular inclination, & acetabular anteversion. Wera et al describe potential causes of instability. These are typed into I. Acetabular Component Malposition; II. Femoral Component Malposition; III.
Thumb Carpometacarpal (CMC) arthritis is a common pathology of the hand. Surgical treatment with thumb reconstruction is well described. Retrospective outcomes have been described for multiple techniques, suggesting patient satisfaction with multiple different techniques. The Thompson technique uses a slip of
The main challenges in hip arthrodesis takedown include the decision to perform fusion takedown and the technical difficulties of doing so. In addition to the functional disadvantages of hip fusion, the long-term effects of hip arthrodesis include low back pain and in some cases ipsilateral knee pain. Indications for fusion conversion to THA include arthrodesis malposition, pseudoarthrosis, and ipsilateral knee, low back, contralateral hip problems, and functional disadvantages of ipsilateral hip fusion. When deciding whether or not to take down fusion, consider the severity of the current problem, risks of takedown and likely benefits of takedown. Best results of fusion takedown occur if abductor function is likely to be present. If the abductors are not likely to function well, dearthrodesis may still help, but the patient will have a profound Trendelenburg or Duchenne gait and risk of hip instability will be higher.
Recurrent dislocation following total hip arthroplasty (THA) is a complex, multifactorial problem that has been shown to be the most common indication for revision THA. At our center, we have tried to approach the unstable hip by identifying the primary cause of instability and correcting that at the time of revision surgery. Type 1:. Malposition of the acetabular component treated with revision of the acetabular component and upsizing the femoral head. Type 2:. Malposition of the femoral component treated with revision of the femur and upsizing the femoral head. Type 3:.
Recurrent dislocation following total hip arthroplasty (THA) is a complex, multifactorial problem that has been shown to be the most common indication for revision THA. At our center, we have tried to approach the unstable hip by identifying the primary cause of instability and correcting that at the time of revision surgery. Type 1: Malposition of the acetabular component treated with revision of the acetabular component and upsizing the femoral head. Type 2: Malposition of the femoral component treated with revision of the femur and upsizing the femoral head. Type 3:
Recurrent dislocation following total hip arthroplasty (THA) is a complex, multifactorial problem that has been shown to be the most common indication for revision THA. At our center, we have tried to approach the unstable hip by identifying the primary cause of instability and correcting that at the time of revision surgery. Type 1: Malposition of the acetabular component treated with revision of the acetabular component and upsizing the femoral head. Type 2: Malposition of the femoral component treated with revision of the femur and upsizing the femoral head. Type 3:
Introduction. Implantation of total hip replacement (THR) remains a concern in patients with developmental dysplasia of the hip (DDH) because of bone deformities and previous surgeries. In this frequently young population, anatomical reconstruction of the hip rotation centre is particularly challenging in severe, low and high dislocation, DDH. The basic principles of the technique and the implant selection may affect the long-term results. The aim of the study was to compare surgical difficulties and outcome in patients who underwent THR due to arthritis secondary to moderate or severe DDH. Material and Methods. We assessed 131 hips in patients with moderate DDH (group 1) and 56 with severe DDH (Group 2) who underwent an alumina-on-alumina THR between 1999 and 2012. The mean follow-up was 11.3 years (range, 5 to 18). Mean age was 51.4 years in group 1 and 42.2 in group 2. There were previous surgery in 5 hips in group 1 and in 20 in group 2 (p<0.001). A dysplastic acetabular shape type C according to Dorr and a radiological cylindrical femur were both more frequent in group 2 (in both cases p<0.001). We always tried to place the acetabular component in the true acetabulum. Smaller cups (p<0.001), screw use for primary fixation (p<0.001) and bone autograft used as segmental reinforcement in cases of roof deficiency (p<0.001) were more frequent in group 2. Radiological analysis of the cup included acetabular abduction, version and Wiberg angles, horizontal, vertical, and hip rotation centre distances, and acetabular head index.
The main challenges in hip arthrodesis takedown include the decision to perform fusion takedown and the technical difficulties of doing so. In addition to the functional disadvantages of hip fusion, the long-term effects of hip arthrodesis include low back pain and in some cases ipsilateral knee pain. Indications for fusion conversion to THA include arthrodesis malposition, pseudoarthrosis, and ipsilateral knee, low back, contralateral hip problems, and functional disadvantages of ipsilateral hip fusion. When deciding whether or not to take down a fusion, consider the severity of the current problem, risks of takedown and likely benefits of takedown. Best results of fusion takedown occur if abductor function is likely to be present. If the abductors are not likely to function well, dearthrodesis may still help, but the patient will have a profound Trendelenburg or Duchenne gait and risk of hip instability will be higher.
Introduction. Failed operated intertrochanteric fractures (with screw cutout, joint penetration, varus collapse, nonunion, or femoral head avascular necrosis) pose treatment dilemmas. The ideal approach is re-osteosynthesis with autologous bone grafting. When the femoral head is unsalvageable, conversion to a prosthetic hip replacement is necessary. Materials/Methods. Thirty-seven patients with failed dynamic hip screw fixation (and unsalvageable femoral heads) were treated with cementless hip arthroplasty (13 underwent Bipolar Arthroplasty, 24 had Total Hip Arthroplasty) over a 5-year period (Dec 2005 to Nov 2010). Seven needed a modified trochanteric split, and the rest were managed by standard anterolateral approach.