Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:

Abstract. Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods. The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated mean values. Results. There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions. ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum metal ion levels postoperatively, but there was no correlation with worse clinical hip function within studies. Studies were poor quality and at high risk of confounding. Pending further work, MDM constructs should be used with caution, reserved for select cases at particularly high risk of dislocation. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 97 - 97
1 Dec 2020
French J Bramley P Scattergood S Sandiford N
Full Access

Objectives. Modular dual-mobility (MDM) constructs are used to reduce dislocation rates after total hip replacement (THR). They combine the advantages of dual mobility with the option of supplementary acetabular screw fixation in complex revision surgery. However, there are concerns about adverse reaction to metal debris (ARMD) as a result of fretting corrosion between the metal liner and shell. Methods: The aim of this systematic review was to find and review all relevant studies to establish the outcomes and risks associated with MDM hip replacement. All articles on MDM THRs in the Medline, EMBASE, CINAHL, Cochrane Library, and Prospero databases were searched. A total of 14 articles were included. A random intercept logistic regression model was used for meta-analysis, giving estimated average values. Results: There were 6 cases of ARMD out of 1312 total. Estimated median incidence of ARMD from meta-analysis was 0.3% (95% CI 0.1 – 1.4%). Mean postoperative serum Cobalt was 0.81 μg/L (95% CI 0.33 – 1.29 μg/L), and Chromium was 0.77 μg/L (95% 0.35 – 1.19 μg/L), from 279 cases in 7 studies. Estimated median incidence of a serum cobalt or chromium ion measurement ≥1 μg/L was 7.9% (95% CI 3.5 – 16.8%), and ≥7 μg/L was 1.8% (95% CI 0.7 – 4.2%). Conclusions: ARMD is a rare but significant complication following total hip replacement using a MDM construct. Its incidence appears higher than that reported in non-metal-on-metal (MoM) hip replacements but lower than that of MoM hip replacements. MDM hip replacements are associated with raised serum metal ion levels postoperatively, but there was no correlation with worse clinical hip function within studies. Studies were poor quality and at high risk of confounding. Pending further work, MDM constructs should be used with caution, reserved for select cases at particularly high risk of dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 39 - 39
1 May 2017
Gee C Poole W Wilson D Gibbs J Stott P
Full Access

Adverse reaction to metal debris (ARMD) is well recognised as a complication of large head metal on metal total hip replacement (THR) leading to pain, bone and tissue loss and the need for revision surgery. An emerging problem of trunnionosis in metal on polyethylene total hip replacements leading to ARMD has been reported in a few cases. Increased metal ion levels have been reported in THR's with a titanium stem and a cobalt chrome head such as the Accolade-Trident THR (Stryker). We present 3 cases of ARMD with Accloade-Trident THR's with 36mm cobalt chrome head and a polyethylene liner. Metal ion levels were elevated in all three patients (cobalt 10.3 – 161nmol/l). Intraoperative tissue samples were negative for infection and inflammatory markers were normal. Abnormal fluid collections were seen in all three cases and bone loss was severe in one patient leading to a proximal femoral replacement. Histology demonstrated either a non-specific inflammatory reaction in a case which presented early or a granulomatous reaction in a more advanced case suggesting a local foreign body reaction. All patients had improved symptoms post-operatively. 1 patient who had staged bilateral Accolade-Trident THR's required revision of both THR's. ARMD in metal on polyethylene THR's with a titanium stem represents a potential emerging problem. Further studies are required to assess whether these occurrences are rare or represent the tip of an iceberg


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 10 - 10
1 May 2017
Mawdesley A Anjum S Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). ARMD describes numerous symptoms in patients such as pain, osteolysis and soft tissue damage. Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines e.g. interleukin-8 (IL-8). This study investigates whether TLR4-specific antagonists inhibit the inflammatory response to cobalt using IL-8 gene expression and protein secretion as a marker of TLR4 activation. Methods. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with TLR4-specific antagonists followed by 0.75mM of cobalt chloride. Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess IL-8 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of IL-8 gene expression. Results. MM6 cells treated with cobalt and LPS up-regulate IL-8 gene expression and protein secretion (n=3). The addition of TLR4-specific antagonists significantly inhibits this up-regulation suggesting the observed effects are TLR4-mediated. MM6 cells stimulated with cobalt (0.75mM) for 16 hours demonstrated a 27-fold increase in IL-8 gene expression (p-value = < 0.0001). When pre-treated with 10μg/ml of a TLR4-specific antagonist fold increase decreased to 6-fold (p-value = < 0.0001). IL-8 secretion decreased from 5000pg/ml to 3000pg/ml (p-value = < 0.0001). Conclusion. TLR4-specific antagonists inhibit cobalt-mediated IL-8 gene expression and protein secretion in MM6 cells. This finding demonstrates the potential to exploit this inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to improve MoM implant longevity, reduce the incidence of ARMD and prevent subsequent revision surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 33 - 33
1 Aug 2012
Lord J Langton D Nargol A Joyce T
Full Access

Wear debris induced osteolysis is a recognized complication in conventional metal-on-polyethylene hip arthroplasty. One method of achieving wear reduction is through the use of metal-on-metal articulations. One of the latest manifestations of this biomaterial combination is in designs of hip resurfacing which are aimed at younger, more active patients. But, do these metal-on-metal hip resurfacings show low wear when implanted into patients?. Using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy less than 1 micron) and a bespoke computer program, volumetric wear measurements for retrieved Articular Surface Replacements (ASR, DePuy) metal-on-metal hip resurfacings were undertaken. Measurements were validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was shown to be accurate to within 0.5mm3. Thirty-two femoral heads and twenty-two acetabular cups were measured. Acetabular cups exhibited mean volumetric wear of 29.00mm3 (range 1.35 - 109.72mm3) and a wear rate of 11.02mm3/year (range 0.30 - 63.59mm3/year). Femoral heads exhibited mean wear of 22.41mm3 (range 0.72 - 134.22mm3) and a wear rate of 8.72mm3/year (range 0.21 - 31.91mm3/year). In the 22 cases where both head and cup from the same prosthesis were available, mean total wear rates of 21.66mm3/year (range 0.51 - 95.50mm3/year) were observed. Revision was necessitated by one of five effects; early femoral neck fracture (4 heads), avascular necrosis (AVN) (2 heads, 1 cup), infection (1 head, 1 cup), adverse reaction to metal debris (ARMD) (19 heads, 18 cups) or ARMD fracture (6 heads, 2 cups). Mean paired wear rates for the AVN and infection retrievals were 0.51mm3/year and 3.98mm3/year respectively. In vitro tests typically offer wear rates for metal-on-metal devices in the region of 2-4mm3. Mean paired wear rates for ARMD and ARMD fracture were 17.64mm3/year and 68.5mm3/year respectively, significantly greater than those expected from in vitro tests. In the 4 cases of early fracture, only the heads were revised so a combined wear rate calculation was not possible. The heads exhibited mean wear rate of 8.26mm3/year. These high wear rates are of concern


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 92 - 92
1 Aug 2012
Joyce T Langton D Lord J Nargol A
Full Access

Background. The worldwide withdrawal of the DePuy Articular Surface Replacement (ASR) device in both its resurfacing and total hip replacement (THR) form on 26 August 2010, after 93,000 were implanted worldwide, has had major implications. The 2010 National Joint Registry for England and Wales quoted figures of 12-13% failure at five years; however these figures may be an underestimate. Patients and methods. In 2004 a single surgeon prospective study of the ASR bearing surface was undertaken. Presented are the Adverse Reaction to Metal Debris (ARMD) failure rates of the ASR resurfacing and ASR THR systems. The diagnosis of ARMD was made by the senior author and was based on clinical history, examination, ultrasound findings, metal ion analysis of blood and joint fluid, operative findings and histopathological analysis of tissues retrieved at revision. Acetabular cup position in vivo was determined using EBRA software. Mean follow up was 52 months (24-81) and 70 patients were beyond 6 years of the procedure at the time of writing. Kaplan Meier survival analysis was carried out firstly with joints designated ‘failure’ if the patient had undergone revision surgery or if the patient had been listed for revision. A second survival analysis was carried out with a failure defined as a serum cobalt concentration > 7microgrammes/L (MHRA guideline from MDA-2010-069). Full explant analysis was carried out for retrieved prostheses. Results. There were 505 ASR hips in total (418 resurfacings and 87 THRs). 657 metal ion samples were available at the time of writing including 152 repeats. Survival analysis using revision/listed for revision as end point (at 6 years): ASR resurfacing: 26.1% failure; ASR THR: 55.5% failure. Survival using ion analysis (at 5 years): ASR resurfacing: 50.1% failure; ASR THR: 66.5% failure. The median (range) volumetric wear rate of failed prostheses was 8.23mm3/year (0.51-95.5). Failure and high ion concentrations are linked to acetabular cup size, anteversion and inclination. Increased failure rates in THRs were due to wear at the taper junction of head and stem. Conclusion. Design flaws in the ASR have led to excessive wear and consequently catastrophic failure rates secondary to ARMD


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2019
Mawdesley A Tyson-Capper A Kirby J Tipper JL
Full Access

Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines/chemokines e.g. CCL3 and CCL4. The aim of this study was to evaluate whether TLR4-specific neutralising antibodies can prevent cobalt-mediated activation of TLR4. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with two different TLR4-specific monoclonal antibodies followed by 0.75mM of cobalt chloride (CoCl2). Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess CCL3/CCL4 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of CCL3/CCL4 gene expression. MM6 cells treated with cobalt and LPS up-regulate CCL3 and CCL4 gene expression and protein secretion. MM6 cells pre-treated with both monoclonal antibodies prior to stimulation with 0.75mM CoCl2 for 16 hours demonstrated significant inhibition of both CCL3 and CCL4 secretion as well as gene expression (both p=<0.0001). One of the antibodies failed to inhibit chemokine expression and secretion in LPS treated cells. This study identifies for the first time the use of TLR4-specific monoclonal antibodies to prevent cobalt activation of TLR4 and subsequent inflammatory response. This finding demonstrates the potential to exploit TLR4 inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to reduce the incidence of ARMD


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 204 - 204
1 Jul 2014
Drynda A Singh G Buchhorn G Kliche S Feuerstein B Ruetschi M Lohmann C
Full Access

Summary Statement. CXCR4 gene and protein expression is regulated in a dose and time-dependent manner by metallic wear debris but not polyethylene wear debris in vitro and in vivo. Introduction. Progressive osteolysis leading to aseptic loosening among metal-on-metal (MoM) total hip arthroplasties (THA's), and adverse reactions to metallic debris (ARMD) are increasing causes for concern among existing patients who have been implanted with MoM hip replacements. Close surveillance of these patients is necessary and difficulties lie in early detection as well as differentiating low-grade infection from ARMD in the early stages. Several inflammatory markers have been investigated in this context, but to date, none is specific with regards to the offending material. In earlier studies, it has been shown that osteoblastic phenotypes and differentiation are regulated by different types of wear particles. Methods. In vitro experiments were performed using MG63 and SaOs-2 osteoblast-like cells co-cultured with increasing concentrations of metallic (Co-35Ni-20Cr-10Mo and Co-28Cr-6Mo) and polyethylene (UHMWPE-GUR1020) particles simulating periprosthetic wear debris. Real-time Polymerase Chain Reaction (RT-PCR) and Western Blotting were used to quantify gene and protein expression of CXCR4. The expression of TNF-a and the effects of AMD3100 on both CXCR4 and TNF-a expression among these cells was also investigated. Immunohistochemical techniques were used to investigate the in-vivo expression of CXCR4 in retrieval tissues obtained from 2 cohorts of failed metal-on-metal and ceramic-on-polyethylene THA's. Results. In-vitro RT-PCR and experiments demonstrated a dose-dependent increase in CXCR4 mRNA (7.5 fold for MG63 and 4.0 fold for SaOs-2 cells) among cells co-cultured with metal alloy particles. Western blotting also showed a time-dependent increase in protein expression of CXCR4. No regulatory effects on CXCR4 gene expression were seen among cells co-cultured with UHMWPE particles. The attempted blockade of CXCR4 by it's known competitive receptor agonist AMD3100 (bicyclam) led to a significant inhibition of metal particle induced TNF-a mRNA expression. In-vivo immunohistochemical data from the 2 cohorts of patients with failed THA's showed CXCR4 positivity among 83% of patients with metal-on-metal hip replacements but none among ceramic-on-polyethylene hip replacements. Discussion/Conclusion. CXCR4, the chemokine receptor for the chemokine SDF-1 (stromal cell derived factor-1), has been shown to play a pivotal role in bone metastasis, inflammatory and autoimmune conditions but has not been investigated in the context of periprosthetic osteolysis in failed joint replacements. Our in-vivo and in-vitro findings collectively suggest that the CXCR4 chemokine is specifically upregulated in a dose and time-dependent manner in the presence of metallic (cobalt-chrome) wear debris but not by polyethylene wear debris. The CXCR4 chemokine receptor may be a selective and specific biomarker for progressive osteolysis seen in failed MoM hip replacements and this phenomenon could potentially have a translational effect on the practice of orthopaedic surgery. Further research is needed to evaluate the interactions of CXCR4 with osteoclast activation and signalling pathways


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives

Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA).

Methods

Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test.