Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 120 - 120
23 Feb 2023
Guo J Blyth P Baillie LJ Crawford HA
Full Access

The treatment of paediatric supracondylar humeral fractures is likely one of the first procedures involving X-ray guided wire insertion that trainee orthopaedic surgeons will encounter. Pinning is a skill that requires high levels of anatomical knowledge, spatial awareness, and hand-eye coordination. We developed a simulation model using silicone soft-tissue and 3D-printed bones to allow development and practice of this skill at no additional risk to patients. For this model, we have focused on reusability and lowering raw-material costs without compromising fidelity. To achieve this, the initial bone model was extracted from open-source computed tomography scans and modified from adult to paediatric size. Muscle of appropriate robustness was then sculpted around the bones using 3D modelling software. A cutaneous layer was developed to mimic oedema using clay sculpturing on a plaster-casted paediatric forearm. These models were then used for 3D-printing and silicone casting respectively. The bone models were printed with settings to imitate cortical and cancellous densities and give high-fidelity tactile feedback upon drilling. Each humerus costs NZD $0.30 in material to print and can be used 1–3 times. Silicone casting of the soft-tissue layers imitates differing relative densities between muscle and oedematous cutaneous tissue, thereby increasing skill necessary to accurately palpate landmarks. Each soft-tissue sleeve cost NZD $70 in material costs to produce and can be used 20+ times. The resulting model is modular, reusable, and replaceable, with each component standardised and easily reproduced. It can be used to practice land-mark palpation and Kirschner wire pinning and is especially valuable in smaller centres which may not be able to afford traditional Saw Bones models. This low-cost model thereby improves equity while maintaining quality of simulation training


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 46 - 46
1 Aug 2020
Charbonnier B Baradaran A Harvey E Gilardino M Makhoul N Barralet J
Full Access

The treatment of critical-sized bone defects still remains today a challenge, especially when the surrounding soft, vascularized and innervated tissues have been damaged - a lack of revascularization within the injured site leading to physiological disorders, from delayed healing to osteonecrosis. The axial insertion of a vascular bundle (e.g. arterio-venous loop, AVL) within a synthetic bone filler to initiate and promote its revascularization has been foreseen as a promising alternative to the current strategies (e.g., vascularized free flaps) for the regeneration of large bone defects. In a previous work, we showed that the insertion of a vein in a 3D-printed monetite scaffold induced its higher revascularization than AVL, thus a possible simplification of the surgical procedures (no microsurgery required). Going further, we investigate in this study whether or not the presence of a vein could stimulate the formation of mineralized tissue insides a synthetic scaffold filled with bone marrow and implanted in ectopic site. Monetite scaffolds were produced by additive manufacturing according to a reactive 3D-printing technique co-developed by the authors then thoroughly characterized. Animal study was performed on 14 male Wistar rats. After anesthesia and analgesia, a skin medial incision in rat thigh allowed the site on implantation to be exposed. Bone marrow was collected on the opposite femur through a minimally invasive procedure and the implant was soaked with it. For the control group (N=7), the implant was inserted in the incision and the wound was closed whereas the femoral bundle was dissected and the vein inserted in the implant for the experimental group (N=7). After 8 weeks animals were sacrificed, the implant collected and fixed in a 4% paraformaldehyde solution. Explants were characterized by µCT then embedded in poly-methyl methacrylate prior SEM, histology and immunohistochemistry. Images were analyzed with CT-Analyzer (Bruker) and ImageJ (NIH) and statistical analyses were carried out using SPSS (IBM). Implants were successfully 3D-printed with a +150 µm deviation from the initial CAD. As expected, implants were composed of 63%wt monetite and 37%wt unreacted TCP, with a total porosity of 44%. Data suggested that scaffold biodegradation was significantly higher when perfused by a vein. Moreover, the latter allowed for the development of a dense vascular network within the implant, which is far more advanced than for the control group. Finally, although mineralized tissues were observed both inside and outside the implant for both groups, bone formation appeared to be much more important in the experimental one. The ectopic formation of a new mineralized tissue within a monetite implant soaked with bone marrow seems to be highly stimulated by the simple presence of a vein alone. Although AVL have been studied extensively, little is known about the couple angiogenesis/osteogenesis which appears to be a key factor for the regeneration of critical-sized bone defects. Even less is known about the mechanisms that lead to the formation of a new bone tissue, induced by the presence of a vein only. With this in mind, this study could be considered as a proof of concept for further investigations


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 30 - 30
1 Apr 2019
Perticarini L Medetti M Benazzo FM
Full Access

BACKGROUND. Total hip revision surgery in cases with previous multiple reconstructive procedures is a challenging treatment due to difficulties in treatment huge bone defects with standard revision prosthetic combinations. A new specially made production system in Electron-Beam Melting (EBM) technology based on a precise analysis of patients' preoperative CT scans has been developed. METHODS. Objectives of design customization in difficult cases are to correctly evaluate patient's anatomy, to plan a surgical procedure and to obtain an optimal fixation to a poor bone stock. The 3D Printing (EBM) technology permits to create an extremely flexible patient matching implant and instrument, with material performances not viable with standard manufacturing process. Dedicated visual 3D tools and instrumentations improve implants congruency according to preoperative plan. Primary stability is enhanced and tailored on patient's anatomy by means of press-fit, iliac stems and the high friction performances of Trabecular Titanium matrix. The use of bone screws and their position is designed to enhance primary stability, even in critical bone conditions, avoiding implant stress shielding and allowing bone integration. 4 cases (2 men and 2 women) of acetabular customized implants were performed. Mean age at surgery was 51.5 years (range 25–72). Patients were reviewed clinically and radiographically at follow-up. RESULTS. No signs of miss-match between intraoperative bone conditions and pre-operative planning were observed. No additional bone grafts or further native bone removal were needed. Biomechanical parameters were restored by using internal modularity (i.e. face-changers / angled spacers). Face-changers allow to correct coverage and anteversion of the acetabular system. Incompatibility or impingement between the stems and new acetabular component was not observed and stem revision was performed in one case. On-table stability proved excellent and no intraoperative complications were observed. All patients underwent an immediate mobilization with full weight-bearing. Mean Harris Hip Score increased significantly from 13.9 (range 6.9–20.6) preoperatively to 75.8 (range 53.9–94) at last follow-up (mean 17.5, range: 10–33), showing an improvement in terms of both pain relief, function and joint mobility. Radiographically neither signs of instability, migration nor tilting were observed. No case of dislocation nor infection were recorded. CONCLUSION. A detailed anatomical reconstruction, in-depth preoperative planning, custom-implant design, high performance of the 3D-printing technology, system modularity and patient-specific surgical tools permitted an effective restoration of the biomechanical joint parameters in these complex revision cases. The optimal primary stability of the implants promoted an early osseointegration with the remaining bone stock. Further studies shall be necessary to assess the performance of these Implants at long-term follow-up


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 37 - 37
1 Dec 2017
Paul L Schubert T Evrard R Docquier P
Full Access

INTRODUCTION. Bone tumour resection and subsequent reconstruction remains challenging for the surgeon. Obtaining adequate margins is mandatory to decrease the risk of local recurrence. Improving surgical margins quality without excessive resection, reducing surgical time and increasing the quality of the reconstruction are the main goals of today's research in bone tumour surgical management. With the outstanding improvements in imaging and computerised planning, it is now a standard. However, surgical accuracy is essential in orthopaedic oncologic surgery (Grimmer 2005). Patient specific instruments (PSI) may greatly improve the surgeon's ability to achieve the targeted resection. Thanks to its physical support, PSI can physically guide the blade yielding to a better control over the cutting process (Wong, 2014). Surgical time might significantly be reduced as well when compared to conventional method or navigated procedure. Finally, reconstruction may gain in rapidity and quality especially when allograft is the preferred solution as PSI can be designed as well for allograft cutting (Bellanova, 2013). Since 2011, PSI have systematically been used in our institution for bone tumour resection and when applicable allograft reconstruction. This paper reports the mid- to long-term medical outcomes on a large series. MATERIALS AND METHODS. Between 2011 and 2016, we systematically used PSI to remove bone tumours in 30 patients. The pre-operative planning involved the tumour delineation drawn on MRI by the surgeon. The MRI and obtained tumour volume were transferred to the CT-scan by image fusion (co- registration). Cutting planes were positioned around the tumour including a safe margin. The PSI were designed to ensure a sufficient stability but kept thin enough to limit the bone exposure. The PSI was manufactured by 3D-printing in a biocompatible and sterilisable material. PSI has been intraoperatively to cut the bone with predetermined margins. Medical files were reviewed for large data collection: type, size and site of the tumour, pre-and post-operative metastatic status, bone and soft tissues resection margins, local recurrence, use of an allograft and a PSI for graft adjustment or not for the reconstruction, the fusion of the allograft when applicable, the follow-up time and early/late complications. RESULTS. Over a period of 5 years, 30 patients were operated on with PSI (10 osteosarcomas, 4 chondrosarcomas, 10 Ewing sarcomas and 6 other types of bone tumours). Mean follow-up was 27±20 months. 18 cases out of 30 have more than 2 years follow-up and 13 out of 30 have more than 3 years of follow-up. Mean operating time was 6h02±3h44. Mean size of the tumours was 8,4±4,7cm and location was the upper limb in 5 cases, inferior limb in 15 cases and the pelvis in 10 occurrences. Metastatic disease developed postoperatively in 5 patients. Surgical margins in the bone were R0 in all cases but one case where a R1 surgery was planned to preserve a nerve root. We did not observe any local recurrence in the bone. Within soft tissues, margins were classified as R0 in 28 patients and R1 in 2 patients. In 26 cases, an allograft was used to reconstruct the bone defect. In 23 of those patients, the allograft was selected by CT scan and cut using a PSI. In the 3 allografts cut free-handily, only one demonstrated a fusion. Of the 23 cut with a guide, 12 fused completely, 2 demonstrated a partial fusion and 9 were not fused at the last follow-up. At the last follow-up, 2 patients were dead of disease, 5 were alive with metastatic disease and 23 were alive without disease. DISCUSSION. Oncology is probably the field where PSI can bring the largest advantage when compared to the conventional procedure. Several papers have reported the use of PSI for bone tumour resection. All of them have shown very promising results on in-vitro experiments (Cartiaux 2014), cadaver experiment (Wong 2012) or small clinical series (Bellanova 2013, Gouin, 2014). None of these papers report a large patient series associated with a clinically relevant follow-up. This series is the first mid- to long-term follow-up series involving PSI tumour surgery. These results are showing strong evidences of clinical improvements. It comes into contradiction with PSI for total knee arthroplasty where controversial results on the patient's outcome has been reported (Thienpont 2014). R0 margin has been systematically obtained for all bone cuttings, and local recurrence has been strongly decreased (3%) when compared to the usual recurrence rates published in the literature (from 15% to 35% according to the location). Allograft fusion seems improved as well thanks to the shape-matching of the selected allograft and a close contact between host and allograft at bony junctions. With a longer follow-up, these evidences should be stronger to definitely make PSI the best option for bone tumour resection