Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 134 - 134
1 Mar 2013
Beuckelaers E Verstraeten J Debacker H Van Tongel A De Wilde L
Full Access

Introduction

Humeral head subluxation in patients with cuff tear arthropathy (CTA) and in patients with primary arthrosis has been classified by Hamada and by Walch (type B). These classifications are based on 2D evaluation techniques (AP X-ray view, axial CT images). To our knowledge no 3D evaluation of the direction of humeral head subluxation has been described

Aim

To describe a reproducible 3D measuring technique to evaluate the direction of the humeral head subluxation in shoulder arthropathy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 44 - 44
1 Sep 2012
De Wilde L
Full Access

Background

There is no consensus on which glenoid plane should be used in total shoulder arthroplasty. Nevertheless, anatomical reconstruction of this plane is imperative for the success of a total shoulder arthroplasty.

Methods

Three-dimensional reconstruction CT-scans were performed on 152 healthy shoulders. Four different glenoid planes, each determined by three surgical accessible bony reference points, are determined. The first two are triangular planes, defined by the most anterior and posterior point of the glenoid and respectively the most inferior point for the Saller's Inferior plane and the most superior point for the Saller's Superior plane. The third plane is formed by the best fitting circle of the superior tubercle and the most anterior and posterior point at the distal third of the glenoid (Circular Max). The fourth plane is formed by the best fitting circle of three points at the rim of the inferior quadrants of the glenoid (Circular Inferior). We hypothesized that the plane with normally distributed parameters, narrowest variability and best reproducibility would be the most suitable surgical glenoid plane.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 120 - 120
1 Jan 2016
Elhadi S Pascal-Moussellard H
Full Access

Introduction. Total hip arthroplaty (THA) using direct anterior minimal invasive (AMI) surgery is an attractive option to achieve a quicker habilitation. However, high complication rates were reported and very often related to technical difficulties at the time of surgery. We hypothesized that 3D preoperative planning may allow to anticipate these difficulties and to decrease the complications rates when using an AMI approach. Material and methods. A prospective observational study included 191 consecutive patients who underwent a primary cementless THA using an AMI. A 3D CT-scan based pre-operative planning was performed in order to anticipate the potential difficulties that may be encountered especially regarding the hip anatomy reconstruction and the implants stability. The components size and position were planned in order to restore the leg length, the offsets, and the anteversions. Postoperatively, a CT scan was performed in order to compare the final anatomy to the planning. Results. The real implants were the same than the ones planned in 94% for the cup, 96% for the stem and 100% for the neck. The hip anatomy was restored with a high accuracy: 0.1±3mm for the hip rotation centre, −1.6±3 mm for the leg length and 0.1±2.5mm for the femoral offset. All the surgical difficulties were anticipated. No false route and no dislocation occurred. A motorized reaming procedure of the femur was required in 6 patients because a very dense bone associated to a narrow femoral diaphysis. A varus neck was used in 60 % of cases mainly in order to compensate a decrease in the acetabular offset generated by the reaming procedure imposed by the acetabular dysplasia. A retroverted neck was used in 8% of patients because of a torsional abnormality and allowed to increase the stability (Figure 1). A severe femoral dysplasia was treated with a custom stem in 7% of cases in order to avoid a rotational osteotomy of the femur a trochanteromy (Figure 2). Discussion. No complication happened at the time of surgery and no dislocation occurred afterwards. False routes were avoided probably also thanks to the shape of the anatomic stem which presents an anterior sagittal curvature. This shape allowed an easier rasping procedure despite the limited exposure of the femur. Conclusion. 3D planning anticipates the potential surgical difficulties at the time of THA, and allow to increase the safety and the accuracy of the surgical procedure