Abstract
Background
There is no consensus on which glenoid plane should be used in total shoulder arthroplasty. Nevertheless, anatomical reconstruction of this plane is imperative for the success of a total shoulder arthroplasty.
Methods
Three-dimensional reconstruction CT-scans were performed on 152 healthy shoulders. Four different glenoid planes, each determined by three surgical accessible bony reference points, are determined. The first two are triangular planes, defined by the most anterior and posterior point of the glenoid and respectively the most inferior point for the Saller's Inferior plane and the most superior point for the Saller's Superior plane. The third plane is formed by the best fitting circle of the superior tubercle and the most anterior and posterior point at the distal third of the glenoid (Circular Max). The fourth plane is formed by the best fitting circle of three points at the rim of the inferior quadrants of the glenoid (Circular Inferior). We hypothesized that the plane with normally distributed parameters, narrowest variability and best reproducibility would be the most suitable surgical glenoid plane.
Results
No difference in position of the mean humeral center of rotation is found between the Circular Max and Circular Inferior plane (X=91.71degrees/X=91.66degrees p=0.907 and Y=90.83degrees /Y=91.7degrees p=0.054 respectively), while clear deviations are found for the Saller's Inferior and Saller's Superior plane (p < 0.001). The Circular Inferior plane has the lowest variability to the coronal scapular plane (p<0.001).
Conclusion
This study provides arguments to use the Circular Inferior glenoid plane as preferred surgical plane of the glenoid.
Level of evidence: Level II, Basic Science Study, Anatomical Survey.