COVID-19 was declared a pandemic by the World Health Organization (WHO) on 11 March
Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles. Result. Nanoswitches showed sub-nanomolar affinity for their respective epitope, binding PIEZO1-expressing ECs similarly to antibodies. Expression of genes downstream of PIEZO1 activity significantly changed after magnetomechanical stimulation, demonstrating that nanoswitches can transduce this stimulus directly to PIEZO1 mechanoreceptors. Moreover, this wireless actuation system proved effective for modulating the expression of genes related to musculoskeletal differentiation pathways in ASCs, with RNA-sequencing showing pronounced shifts in extracellular matrix organization, signal transduction, or collagen biosynthesis and modification. Importantly, targeting each epitope led to different signaling effects, implying distinct roles for each domain in the sophisticated function of these channels. Conclusion. This innovative wireless actuation technology provides a promising approach for dissecting PIEZO-mediated mechanobiology and suggests potential therapeutic applications targeting PIEZO1 in regenerative medicine for mechanosensitive tissues like tendon. Acknowledgements. EU's Horizon
The e-scooter trial was part of a wider initiative from the Department for Transport in response to COVID pandemic. New emergency legislation was introduced in
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels. Immunostaining of tendon-related proteins presented analogous outcomes, corroborating our hypothesis. Our results thus demonstrate that microstructural cues and biological signals synergistically direct stem cell fate commitment, suggesting that this strategy holds potential for improving tendon healing and might be adaptable for other biological tissues. The proposed concept highlights the GF-sequestering ability of MINPs which allows a cost-effective alternative to recombinant GF supplementation, potentially decreasing the translational costs of tissue engineering strategies. Acknowledgements: The authors acknowledge the funding from the European Union's Horizon
The covid-19 pandemic had a great impact in the daily clinical and surgical practice. Concerning patients with a femoral neck fracture, there is the need of a negative Sars-CoV-2 test or an established isolation period for the positive cases, pre-operatively. The goal of this study was to evaluate the impact of the pandemic in the management of patients with femoral neck fractures, who were submitted to surgical treatment with hemiarthroplasty, in our hospital. A retrospective, observational study was performed, analysing the patients with femoral neck fractures submitted to hip hemiarthroplasty, during the years 2019 (before the pandemic) and
In March
Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon
The Nottingham Hip Fracture Score (NHFS) was developed in 2007 as a predictor of 30-day mortality after hip fracture surgery following a neck of femur fracture. The National Hip Fracture Database is the standard used which calculated their own score using national data. The NHF score for 30-day mortality was calculated for 50 patients presenting with a fractured neck femur injury between January
Ankle fractures are among the most common types of fractures. If surgery is not performed within 12 to 24 hours, ankle swelling is likely to develop and delay the operative fixation. This leads to patients staying longer in the ward waiting and increased hospital occupancy. This prolonged stay has significant financial implication as well as it is frustrating for both patients and health care professionals. The aim was to formulate a pathway for the ankle fracture patients coming to the emergency department, outpatients and planned for operative intervention. To identify whether pre-operative hospital admissions of stable ankle fracture patients are reduced with the implementation of the pathway. We formulated an ankle fracture fixation pathway, which was approved for use in December
The Severity Scoring System (SSS) is a guide to interpreting findings across clinical, functional, and radiological findings, used by qualified, specially trained physiotherapists in the advanced practice role in order to provide consistency in determining the severity of the patient's condition and need for surgical consultation. The system has been utilized for over 14 years as a part of standardized assessment and management care and was incorporated into virtual care in
The objectives of this study are to evaluate the impact of the CoVID-19 pandemic on the development of relevant emerging digital healthcare trends and to explore which digital healthcare trend does the health industry need most to support HCPs. A web survey using 39 questions facilitating Five-Point Likert scales was performed from 1.8.
Introduction and Objective. In anticipation of reduced workload and need for minimisation of staff contact with infectious patients during the COVID-19 lockdown in
Introduction and Objective. The coronavirus (Covid-19) pandemic, first identified in China in December 2019, halted daily living with mandatory lockdowns imposed in Israel in March
The HIPGEN study funded under EU Horizon
To analyze the effect of tooth extraction site preservation on bone mineral density 6 months after surgery. From
The term macromolecular crowding is used to describe equilibria and kinetics of biochemical reactions and biological processes that occur via mutual volume exclusion of macromolecules in a highly crowded structureless medium. In vivo, the extracellular space is heavily crowded by a diverse range of macromolecules and thus, biological processes occur rapidly, whilst in vitro, in the absence of macromolecules, the same processes occur very slowly, if they are initiated at all (1-3). This talk will discuss the concept of macromolecular crowding, alone or in combination with other in vitro microenvironment modulators, in tendon engineering context. Acknowledgements: This work has received funding from the European Research Council (ERC) under the European Union's Horizon
To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September
Messenger RNA (mRNA) is a new class of drug that can be used to express a therapeutic protein and, in contrast to DNA, is safer and inexpensive. Among its advantages, mRNA will immediately begin to express its encoded protein in the cell cytoplasm. The protein will be expressed for a period of time, after which the mRNA is degraded. There is no risk of genetic damage, one of the concerns with plasmid DNA (pDNA) used in traditional gene therapy approaches. Nevertheless, mRNA application in tissue regeneration and regenerative medicine remains limited. In this case, mRNA must overcome its main hurdles: immunogenicity, lack of stability, and intracellular delivery. Research has been done to overcome these limitations, and the future of mRNA seems promising for tissue repair. 1,2. This keynote talk will address questions including: What are the opportunities for mRNA to improve outcomes in musculoskeletal tissue repair, in particular bone and cartilage? What are the key factors and challenges to expediting this technology to patient treatment (beyond COVID-19 vaccination)?. Acknowledgements: E.R.B thanks the cmRNAbone project funded by the European Union's Horizon
Due to the presence of megakaryocytes, platelets and clotting factors, bone marrow aspirate (BMA) tends to coagulate. For the first time, starting from our previous studies on mesenchymal vertebral stem cells, it has been hypothesized that coagulated BMA represents a safe and effective autologous biological scaffold for bone regeneration in spinal surgery. The present research involved advanced preclinical in vitro models and the execution of a pilot clinical study. Evaluation of cell morphology, growth kinetics, immunophenotyping, clonogenicity, trilineage-differentiation, growth-factors and HOX and TALE gene expression were analyzed on clotted- and un-clotted human V-BMA. In parallel, a pilot clinical study on ten patients with degenerative spine diseases submitted to instrumented posterior arthrodesis, is ongoing to assess the ability of clotted-V-BMA to improve spinal fusion at 6- and 12-months follow-up. Results demonstrated that clotted-V-BMA have significantly higher growth-factor expression and mesenchymal stem cell (MSCs) viability, homogeneity, clonogenicity, and ability to differentiate towards the osteogenic phenotype than un-clotted-V-BMA. Clotted-V-BMA also highlighted significant reduced expression of PBX1 and of MEIS3 genes negatively involved in osteoblast maturation and differentiation. From December
Abstract. There are numerous advantages of discharging patients early after any surgery. Day case arthroplasty in hip and knee is already brought into practice at many centres. We present our journey towards discharging elective shoulder arthroplasty patient on same after their surgery. An initial retrospective study of patients who underwent elective shoulder replacement between 2017 and