header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 127 - 127
1 May 2012
Ratner B
Full Access

Millions of medical devices made of synthetic or modified natural materials all trigger a similar reaction—the foreign body reaction. Biocompatibility, for materials that pass routine cytoxicity assays, is largely associated with a mild foreign body reaction. I.e. a thin, avacular, collagenous, non-adherent foreign body capsule. The implant is incorporated into a dead-zone of acellular scar. The contemporary tissue engineering paradigm would suggest that synthetic polymers and scaffolds lacking cellular, biomolecule or biomimetic elements will give this same fibrotic, avascular healing reaction.

In this talk, a synthetic biomaterial will be described that readily integrates into tissue and may stimulate spontaneous reconstruction of tissue. The material is fabricated by a process called sphere-templating and it can be made from many synthetic polymers including hydrogels, silicones and polyurethanes. All pores are identical in size and interconnected. Studies from our group have shown optimal healing (as suggested by extensive vascularity and minimal fibrosis) for spherical pores of 30–40 m size. The integrative healing noted is independent of biomaterial. Similar results are observed with sphere-templated silicone rubber and pHEMA hydrogel. In addition, surface chemical modification of the hydrogel with carbonyl diimidazole, or immobilisation on the hydrogel of collagen I or laminin did not change the healing response.

Also, good healing results have been seen upon implantation in skin (subcutaneous, percutaneous), heart muscle, sclera, skeletal muscle, bone and vaginal wall. We consistently find the pore spaces heavily populated by monocytic cells that stain for macrophage cell surface markers. However, at long implantation times (16 or more weeks), the ability to stain for macrophage surface markers decreases. It could be possible that these cells populating the implants are differentiating into other tissues. Thus, such materials may represent a path to cell-free tissue engineering. Others have seen similar healing results, via completely different materials strategies, generally involving biological molecules. The in vivo results from our group and related results from other groups suggest we are on the cusp of a revolution in healing, biomaterials integration and tissue reconstruction. Also, the boundaries between biomaterials and tissue engineering continue to blur.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 133 - 133
1 May 2012
Ratner B Manner P
Full Access

Excellent reconstruction of bone will be described induced by a synthetic biomaterial without a calcium phosphate mineral phase or growth factors, and with a pore size of 35 m. The material is fabricated by a process called sphere-templating and it can be made from many synthetic materials including hydrogels, silicones, polyurethanes and glasses. All pores are identical in size and interconnected. Studies from our group have shown optimal healing in soft tissue (as suggested by extensive vascularity and minimal fibrosis) for spherical pores of 30–40 m size. Sphere-templated hydrogel implants in bone were performed using the following procedure: Under appropriate anesthesia, 18–24month old NZW rabbits underwent medial parapatellar arthrotomy, with exposure of the medial femoral condyle. A 3.5 mm end-cutting drill, locked in a rigid armature, was used to create a host graft site at the center of the articular cartilage lesion, with depth of cut matched to the sphere-templated construct thickness of 2 mm. Animals were sacrificed at one day, 28 days, and 12 weeks. After sacrifice, the femora were isolated and the condyles dissected. Condyles were fixed in 4% paraformaldehyde at 4°C for 48 hrs, decalcified in Immunocal for 14 days at 4°C and paraffin embedded. Specimens were sectioned to a thickness and stained with Safranin- O/Fast Green, hematoxylin/eosin or Masson's trichrome. Prior to decalcification, selected samples were evaluated by micro-CT utilising a Skyscan 1076 microCT low dose in-vivo X-ray scanner, slice imaging and 3D image reconstruction. Both histologically, and with micro-CT imaging, excellent tissue and mineral reconstruction was observed in the sphere templated material. The contralateral control, drilled but without implant, showed essentially no reconstruction.

Since the classical paradigm for bone reconstruction requires either autologous bone, cadaver bone, or calcium phosphate scaffolds with pores >150 microns, the healing observed here suggests new avenues for bone regeneration.