header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 4 - 4
1 Jun 2012
Ando Y Noda I Miyamoto H Akiyama T Shimazaki T Yonekura Y Miyazaki M Mawatari M Hotokebuchi T
Full Access

Bacterial infection related to prosthetic replacement is one of the serious types of complications. Recently, there has been a greater interest in antibacterial biomaterials. In order to reduce the incidence of replacement-associated infections, we developed a novel coating technology of Hydroxyapatite (HA) containing silver (Ag). We reported the Ag-HA coating showed high antibacterial activity against E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) under static condition. However, human bodies have a circulating body fluid, which is not a static condition. And the growth and the maturation of biofilm, which is said that a common course of persistent infections at a surgical site, are enhanced by the flow of broth in culture environment. Therefore, we evaluated whether the Ag-HA coating inhibits the biofilm formation on its surface or not by a biofilm-forming test under flow condition in this study.

Ag-HA or HA powder was sprayed onto the commercial pure titanium disks using a flame spraying system. The HA coating disks were used as negative control. The biofilm-forming methicillin sensitive S. aureus (BF-MSSA; Seattle 1945) strain and the BF-MRSA (UOEH6) strain were used. The pre-culture bacterial suspension (about 105 colony forming units; CFU) was inoculated onto the Ag-HA and HA coating disks. After cultivation at 37 °C for 1 h, the disks were rinsed twice with 500 μL sterile PBS (-) to eliminate the non-adherent bacteria. The number of the adherent bacteria on these disks was counted using culture method. After rinsing, the disks were transferred into petri-dish containing Trypto–Soy Broth (TSB) + 0.25% glucose with a stirring bar on the magnetic stirrer and they were cultured at 37°C for 7 days. In the meantime, the stirring bar was spun at 60 rounds per minute. Then, the disks were immersed in a fluorescent reagent to stain the biofilm. Finally, the biofilm on each disk was observed by a fluorescence microscope and the biofilm-covered rate on the surfaces of them was calculated using the NIH image software.

The number of the bacteria on these disks was not so different between Ag-HA and HA coating after rinsing. After biofilm-forming test, the coverage of the biofilm of BF-MSSA was 2.1% and 81.0% on the Ag-HA and HA coatings, respectively. Similarly, in the case of BF-MRSA, it was 7.7% and 72.0% on the Ag-HA and HA coatings, respectively. Though bacteria slightly adhered, biofilm was hardly observed on the Ag-HA coating. The biofilm on the HA coating was extensive and mature. The inhibition effect of biofilm formation on the Ag-HA coating might be ascribed to the antibacterial effect by Ag ions released from the coating. Because Ag ions have a broad spectrum of antibacterial activity against pathogens, including biofilm forming bacteria, they inhibited the biofilm formation on the Ag-HA coating by killing adherent bacteria. Even in a flow condition, it was suggested that the AgHA shows the antibacterial activity, though the conditions in this work are different from those in living body.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 94 - 94
1 Jun 2012
Hirokawa S Motooka T Akiyama T Morizono R Tanaka R Mawatari M Horikawa E Hotokebuchi T
Full Access

The objective of this study is to introduce the forces acting on the knee joint while ascending from kneeling. Our research group has developed a new type of knee prosthesis which is capable of attaining complete deep knee flexion such as a Japanese style sitting, seiza. Yet we could not set up various kinds of simulation or experiment to assess the performance of our prosthesis because the data about joints' forces during the ascent from deep knee flexion are lacking. Considering this circumstance, we created a 2D mathematical model of lower limb and determined knee joint force during ascent from kneeling to apply them for the assessment of our prosthesis.

Ten male and five female healthy subjects participated in the measurement experiment. Although the measurement of subjects' physical parameters was non-invasive and direct, some parameters had to be determined by referring to the literature. The data of ground reaction force and each joint's angle during the motion were collected using a force plate and video recording system respectively. Then the muscle forces and the joints' forces were calculated through our mathematical model. In order to verify the validity of our model approach, we first introduced the data during the activities with small/middle knee flexion such as level walking and rising from a chair; these kinds of data are available in the literature. Then we found our results were in good agreement with the literature data. Next, we introduced the data during the activities with deep knee flexion; double leg ascent [Fig.1 (a)] and single leg ascent [Fig.1 (b)] from kneeling without using the upper limbs.

The statistics of the maximum values on the single knee joint for all the subjects were; during double leg ascent, Fmax = 4.6±0.6 (4.3-5.2) [BW: (force on the knee joint)/(body weight)] at knee flexion angle of b =140±8 (134-147)°, during double leg ascent, Fmax = 4.9±0.5 (4.0-5.6) [BW] at b = 62±33 (28-110)° for the dominant leg, and Fmax = 3.0±0.5 (22.2-3.8) [BW] at b = 138±6 (130-150)° for the supporting leg respectively. We found that the moment arm length, i.e., the location of muscle insertion significantly affected the results, while ascending speeds did not affect the results much. We may conclude that the single leg ascent should be recommended since Fmaxdid not become large while deep knee flexion. The values could be used for assessing the strength of our knee prosthesis from the risk analysis view point.