Abstract
The objective of this study is to introduce the forces acting on the knee joint while ascending from kneeling. Our research group has developed a new type of knee prosthesis which is capable of attaining complete deep knee flexion such as a Japanese style sitting, seiza. Yet we could not set up various kinds of simulation or experiment to assess the performance of our prosthesis because the data about joints' forces during the ascent from deep knee flexion are lacking. Considering this circumstance, we created a 2D mathematical model of lower limb and determined knee joint force during ascent from kneeling to apply them for the assessment of our prosthesis.
Ten male and five female healthy subjects participated in the measurement experiment. Although the measurement of subjects' physical parameters was non-invasive and direct, some parameters had to be determined by referring to the literature. The data of ground reaction force and each joint's angle during the motion were collected using a force plate and video recording system respectively. Then the muscle forces and the joints' forces were calculated through our mathematical model. In order to verify the validity of our model approach, we first introduced the data during the activities with small/middle knee flexion such as level walking and rising from a chair; these kinds of data are available in the literature. Then we found our results were in good agreement with the literature data. Next, we introduced the data during the activities with deep knee flexion; double leg ascent [Fig.1 (a)] and single leg ascent [Fig.1 (b)] from kneeling without using the upper limbs.
The statistics of the maximum values on the single knee joint for all the subjects were; during double leg ascent, Fmax = 4.6±0.6 (4.3-5.2) [BW: (force on the knee joint)/(body weight)] at knee flexion angle of b =140±8 (134-147)°, during double leg ascent, Fmax = 4.9±0.5 (4.0-5.6) [BW] at b = 62±33 (28-110)° for the dominant leg, and Fmax = 3.0±0.5 (22.2-3.8) [BW] at b = 138±6 (130-150)° for the supporting leg respectively. We found that the moment arm length, i.e., the location of muscle insertion significantly affected the results, while ascending speeds did not affect the results much. We may conclude that the single leg ascent should be recommended since Fmaxdid not become large while deep knee flexion. The values could be used for assessing the strength of our knee prosthesis from the risk analysis view point.