header advert
Results 1 - 30 of 30
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 7 - 7
17 Nov 2023
Hayward S Gheduzzi S Keogh P Miles T
Full Access

Abstract

Objectives

Spinal stiffness and flexibility terms are typically evaluated from linear regression of experimental data and are then assembled into 36-element matrices. Summarising in vitro test results in this manner is quick, computationally cheap and has the distinct advantage of outputting simple characteristic values which make it easy to compare results. However, this method disregards many important experimental features such as stiffening effects, neutral and elastic zones magnitudes, extent of asymmetry and energy dissipation (hysteresis). Alternatives to the linear least squares method include polynomials, separation of the load-displacement behaviour into the neutral and elastic zones using various deterministic methods and variations on the double sigmoid and Boltzmann curve fits. While all these methods have their advantages, none provide a comprehensive and complete characterisation of the load-displacement behaviour of spine specimens. In 1991, Panjabi demonstrated that the flexion-extension and mediolateral bending behaviour of functional spinal units could be approximated using the viscoelastic model consisting of a nonlinear spring in series with a linear Kelvin element. Nowadays viscoelastic models are mainly used to describe creep and stress relaxation, rather than for cyclic loading. The aim of this study was to conclusively prove the viscoelastic nature of spinal behaviour subject to cyclic loading. Being able to describe the behaviour of spine specimens using springs and dampers would yield characterising coefficients with recognisable physical meaning, thus providing an advantage over existing techniques.

Methods

Six porcine isolated spinal disc specimens (ISDs) were tested under position and load control. Visual inspection of the load-displacement graphs from which the principal terms of the stiffness and flexibility matrices are derived suggest that the load-displacement behaviour could be idealised by a nonlinear spring system with damping. It was hypothesised that the contributions arising from non-linear spring-like behaviour and damping could be separated for each of the principal load-displacement graphs.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 41 - 41
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Lower back pain (LBP) is a global problem. Countless in vitro studies have attempted to understand LBP and inform treatment protocols such as disc replacement devices (DRDs). A common method of reporting results is applying a linear fit to load-displacement behaviour, reporting the gradient as the specimen stiffness in that axis. This is favoured for speed, simplicity and repeatability but neglects key aspects including stiffening and hysteresis. Other fits such as polynomials and double sigmoids better address these characteristics, but solution parameters lack physical representation. The aim of this study was to implement an automated method to fit spinal load-displacement behaviour using viscoelastic models.

Six porcine lumbar spinal motion segments were dissected to produce isolated disc specimens. These were potted in Wood's metal, ensuring the disc midplane remained horizontal, sprayed with 0.9% saline and wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. Specimens were tested using the University of Bath spine simulator operating under position control with a 400N axial preload.

Specimens were approximated using representative viscoelastic elements. These models were constructed in MATLAB Simulink R2020b using the SimScape library. Solution coefficients were determined by minimizing the sum of squared errors cost function using a non-linear least squares optimization method.

The models matched experimental data well with a mean % difference in model and specimen enclosed area below 6% across all axes. This indicates the ability of the model to accurately represent energy dissipated. The final models demonstrated reduced RMSEs factors of 3.6, 1.1 and 9.5 smaller than the linear fits for anterior-posterior shear, mediolateral shear and axial rotation respectively.

These nonlinear viscoelastic models exhibit significantly increased qualities of fit to spinal load-displacement behaviour when compared to linear approximations. Furthermore, they have the advantage of solution parameters which are directly linked to physical elements: springs and dampers. The results from this study could be instrumental in improving the design of DRDs as a mechanism for treating LBP.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 42 - 42
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro biomechanical studies on spine specimens have been undertaken, attempting to understand spinal response to loading and possible factors contributing to LBP. However, despite employing similar testing protocols, there are challenges in replicating in vivo conditions and significant variations in published results. The aim of this study was to use the University of Bath (UoB) spine simulator to perform tests to highlight the major limitations associated with six degree of freedom (DOF) dynamic spine testing.

A steel helical spring was used as a validation model and was potted in Wood's metal. Six porcine lumbar spinal motion segments were harvested and dissected to produce isolated spinal disc specimens. These were potted in Wood's metal, ensuring the midplane of the disc remained horizontal and then sprayed with 0.9% saline and wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was used for spinal specimens. Specimens were tested under the stiffness and flexibility protocols.

Tests were performed using the UoB custom 6-axis spine simulator with coordinate axes. Tests comprised five cycles with data acquired at 100Hz. Stiffness and flexibility matrices were evaluated from the last three motion cycles using the linear least squares method.

According to theory, inverted flexibility matrices should equal stiffness matrices. In the case of the spring, the matrices matched analytical solutions and inverted flexibility matrices were equivalent to stiffness matrices. Matrices from the spinal tests demonstrated some symmetry, with similarities between inverted flexibility- and stiffness matrices, though these were unequal overall. Matrix element values were significantly affected by displacements assumed to occur at disc centre.

Spring tests proved that for linear, elastic specimens, the spine simulator functioned as expected. However, multiple factors limit the confidence in spine test results. Centre of rotation, displacement assumptions and rigid body transformations are known to impact the results from spinal testing, and these should be addressed going forward to improve the replication of in vivo conditions.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 43 - 43
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes.

Six porcine lumbar spinal motion segments were harvested from organically farmed pigs. Posterior structures were removed to produce isolated spinal disc specimens. Specimens were potted in Wood's metal, ensuring the midplane of the IVD remained horizontal. After potting, specimens were sprayed with 0.9% saline, wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was equilibrated for 30 minutes before testing. Specimens were tested intact and after a partial nucleotomy removing ~0.34g of nuclear material with a curette through an annular incision.

Stiffness tests were performed using the University of Bath's custom 6-axis spine simulator with coordinate axes and displacement amplitudes. Tests comprised five cycles with data acquired at 100Hz. Stiffness matrices were evaluated from the last three motion cycles using the linear least squares method.

Stiffness matrices for intact and nucleotomy tests were compared. No significant differences in shear, axial or torsional stiffnesses were noted. Nucleotomy caused significantly higher stiffness in lateral bending and flexion-extension with increased linearity and the load-displacement behaviour in these axes displayed no neutral zone (NZ).

Induced changes were designed to replicate posterolaterally herniated discs. Unaffected shear, axial and torsional stiffnesses suggest the annulus is crucial in these axes. However, reduced ROM and NZ after nucleotomy suggests bending is most affected by herniation. Increased linearity and lack of defined NZ in these axes demonstrates herniation causes major changes to the viscoelastic behaviour of spine specimens in response to loading.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 24 - 24
1 Dec 2021
Hayward S Miles T Keogh P Gheduzzi S
Full Access

Abstract

Introduction

Back pain affects 80% of the population at some stage in their life with significant costs to society. Mechanisms and causes of pain have been investigated by studying the behaviour of functional spinal units (FSUs) subjected to displacement- or load control protocols in 6 degrees of freedom (DOF). Load control allows specimens to move physiologically in response to applied loads whereas displacement control constrains motion to individual axes. The displacement control system of the Bath University six-axis spine simulator has been validated and the load control system is in the process of iterative development.

Objectives

The objective was to build a computational model of the spine simulator to develop a complete 6 DOF load control system to enable accurate specimen testing under load control.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 45 - 45
1 Mar 2021
Czerbak K Gheduzzi S Clift S
Full Access

Abstract

Objectives

A fibril reinforced multiphasic cartilage model was developed to improve the understanding of the depth-dependent cartilage internal structure and its through thickness biomechanical response. The heterogeneous model of cartilage was validated against full-field strain measurement obtained via Digital Image Correlation (DIC) during free swelling experiments.

Methods

Hemi-cylindrical cartilage cores of 5mm diameter were obtained from porcine femoral condyles and humeral heads. The full field behaviour of these samples was monitored using DIC during an osmotic free swelling experiment performed following a standardised protocol [1]. Computational models were created in FEBio (version 2.8, febio.org). The cartilage, submerged in saline solution was represented by a 1×1mm cube [2] with geometry and constrains set up to mimic the experimental conditions. Cartilage was modelled as a multiphasic material represented by one inhomogeneous layer with depth-dependent Young's modulus [3], zonally varied water content and zonally oriented collagen fibrils [4]. Experimental and predicted strain maps were compared to each other both qualitatively and quantitatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 47 - 47
1 Mar 2021
Hayward SJ Lammey GP Gheduzzi S Miles AW Keogh PS
Full Access

Abstract

Introduction

Altered mechanical loading is a contributing factor to low back pain, a condition affecting 80% of the population at some point in life. A plethora of in-vitro studies exist focusing on 6 degree of freedom (dof) testing of functional spinal units (FSU) to obtain a specimen stiffness matrix. Due to differences in the performance of test apparatus and in the technique used to manipulate raw data it is difficult to compare results from different groups.

Objectives

Our primary objective was to develop a standardised technique to benchmark the performance of testing apparatus; a secondary objective was to standardise the data manipulation technique.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 38 - 38
1 Jan 2019
Hernandez BA Gill HS Gheduzzi S
Full Access

Several specimen specific vertebral (VB) models have been proposed in the literature; these replicate the typical set-up of a vertebral body mounted in bone cement and subject to a compressive ramp. VB and cement geometries are obtained from micro-CT images, the cement is typically assigned properties obtained from the literature while VB properties are inferred from the Hounsfield units- where the conversion factor between grayscale data and Young's modulus is optimised using experimental load-displacement data. Typically this calibration is performed on VBs dissected from the same spines as the study group. This, alongside the use of non-specific cement properties, casts some doubts on the predictivity of the models thus obtained. The predictivity of specimen specific FE models was evaluated in this study.

VBs obtained from three porcine cervical segments (C2-C6) were stripped of all soft tissues, potted in bone cement and subject to a compressive loading ramp. A speckle pattern was applied to the anterior part of the specimen for DIC imaging. Specimen specific FE models were constructed from these specimens and a conversion factor between grayscale and material properties was optimised. Cement properties were assigned based on literature data. VBs from a further cervical spine (C2-C7) were subject to the same experimental protocol. In this case, the models generated from microCT images the material properties of bone were assigned based on the average conversion factor obtained previously. The predicted load-displacement behaviour thus obtained was compared to experimental data. Generally, poor agreement was found between overall load-displacement. The use of generic cement properties in the models was found to be partly responsible for this. When the load displacement behaviour of the VB was studied in isolation, good agreement within one standard deviation was found with 4 out of 6 models showing good correlation between simulation and DIC data.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2019
Boyd S Silvestros P Hernandez BA Cazzola D Preatoni E Gill HS Gheduzzi S
Full Access

Digital image correlation (DIC) is rapidly increasing in popularity in biomechanical studies of the musculoskeletal system. DIC allows the re-construction of full field displacement and/or strain maps of the surface of an object. DIC systems typically consist of two cameras focussing on the same region of interest. This constrains the angle between the cameras to be relatively narrow when studying specimens characterised by complex geometrical features, giving rise to concerns on the accuracy of the out of plane estimates of movement.

The aim of this research was to compare the movement profiles of bony segments measured by DIC and by an optoelectronic motion capture system.

Five porcine cervical spine segments (C2-C6) were obtained from the local butcher. These were stripped of all anterior soft tissues while the posterior structures were left intact. A speckle pattern was applied to the anterior aspect of the specimens, while custom made infrared clusters were rigidly attached to the 3 middle vertebral bodies (C3-C5). The specimens were mounted in a custom made impact rig which fully constrained C6 but allowed C2 to translate in the axial direction of the segment. Images were acquired at 4kHz, both for the DIC (Photron Europe Ltd, UK) and motion capture cameras (Qualisys Oqus 400, Sweden). The in-plane and out of plane displacements of each of the VBs were plotted as a function of time and the similarity between the curves thus obtained was analysed using the SPM1D technique which allowed a comparison to be made in terms of t-statistics. No statistical differences were found between the two techniques in all axis of movement, however the out of plane movements were characterised by higher variance which is attributed to the uncertainty arising from the near parallel positioning of the cameras in the experimental set-up.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 5 - 5
1 Jan 2019
Silvestros P Boyd S Hernandez BA Gheduzzi S Gill HS Preatoni E Cazzola D
Full Access

Head collisions in sport can result in catastrophic cervical spine injuries. Musculo-skeletal (MSK) modelling can help analyse the relationship between players' motion, external loading and internal stresses that lead to injury. However, the literature lacks sport specific MSK models. In automotive research the intervertebral disc behaviour has been represented as viscoelastic elements (“bushing”), whose stiffness and damping parameters are often estimated under quasi-static conditions and may lack validity in dynamic impacts. The aim of this study was to develop a validated cervical spine model for axial impacts for future use in the analysis of head-first rugby collisions.

A drop test rig was used to replicate a sub-catastrophic axial head impact. A load of 80 N from 0.5 m was applied to the cranial aspect of a C2-C6 porcine spinal specimen mounted in the neutral position. The 3D motion of C3-C5 vertebras (4 kHz) and the cranial axial load (1 MHz) were measured via motion capture (Qualysis, Sweden) and a uniaxial load cell (RDP Electronics Ltd, UK). Specimen specific models were created in NMSBuilder and OpenSim after the vertebrae geometries were obtained from the segmentation of micro-CT images of the specimens. The compressive viscoelastic properties of four vertebral joints (C2-C3 through to C5-C6) were optimised via a Genetic Algorithm (MATLAB v2016b, The Mathworks Inc) to minimise tracking errors.

The optimisation converged to a solution of 140–49000 kN/m and 2000–8000 Ns/m for stiffness and damping respectively (RMSE=5.1 mm). Simulated joint displacements ranged between 0.09 – 1.75 mm compared to experimental 0.1 – 0.8 mm.

Optimal bushing parameters were higher than previously reported values measured through quasi-static testing. Higher stiffness and damping values could be explained by the higher-dynamics nature of the event analysed related to a different part of the non-linear intervertebral disc load-displacement curve.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 10 - 10
1 Apr 2018
Gosiewski J Gheduzzi S Gill R
Full Access

Introduction

The THR is the second most successful and cost-effective surgical procedure of all time. Data shows that hip cup failure is a significant problem. The aim of this study is to improve methods of cemented cup fixation through validation experiments and FEA.

Methods

Five Sawbones composite pelves with cemented UHMWPE cups were tested. Each pelvis was instrumented with triaxial strain gauges at four locations of predicted high strain. Each sample (n = 5) was bolted at the sacroiliac joint in a uniaxial testing machine. A load of 500 N was applied in the direction of the peak force during normal walking, for five repetitions. The directional surface strains were used to evaluate the equivalent strain. Specimen specific finite element models were developed based on CT scan data using ScanIP. Each mesh consisted of an average of 2.5 million linear tetrahedral elements and was solved in ANSYS.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 33 - 33
1 Apr 2018
Hernandez BA Blackburn J Cazzola D Holsgrove TP Gill H Gheduzzi S
Full Access

Cervical spine fractures are frequent in impact sports, such as rugby union. The consequences of these fractures can be devastating as they can lead to paraplegia, tetraplegia and death. Many studies have been conducted to understand the injury mechanisms but the relationship between player cervical spine posture and fracture pattern is still unclear. The aim of this study was to evaluate the influence of player cervical spine posture on fracture pattern due to an impact load. Nineteen porcine cervical spines (C2 to C6) were dissected, potted in PMMA bone cement and mounted in a custom made rig. They were impacted with a mean load of 6 kN. Eight specimens were tested in an axial position, five in flexion and six in lateral bending. All specimens were micro-CT imaged (Nikon XT225 ST Scanner, Nikon Metrology, UK) before and after the tests, and the images were used to assess the fracture patterns. The injuries were classified according to Allen-Ferguson classification system by three independent observers. The preliminary results showed that the main fracture modalities were consistent with those seen clinically. The main fractures for the axial orientation were observed in C5-C6 level with fractures on the articular process and endplates. These findings support the concept that the fracture patterns are related to the spine position and give an insight for improvements on sports rules in order to reduce the risk of injury.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 17 - 17
1 Apr 2018
Pascual SR Gheduzzi S Miles A Keogh P
Full Access

Back pain is a significant socio-economic problem affecting around 80% of the population at some point during their lives. Chronic back pain leads to millions of days of work absence per year, posing a burden to health services around the world. In order to assess surgical interventions, such as disc replacements and spinal instrumentations, to treat chronic back pain it is important to understand the biomechanics of the spine and the intervertebral disc (IVD). A wide range of testing protocols, machines and parameters are employed to characterise the IVD, making it difficult to compare data across laboratories.

The aim of this study was to compare the two most commonly used testing protocols in the literature: the stiffness and the flexibility protocols, and determine if they produce the same data when testing porcine specimens in six degrees of freedom under the same testing conditions. In theory, the stiffness and the flexibility protocols should produce equivalent data, however, no detailed comparison study is available in the literature for the IVD, which is a very complex composite structure.

Tests were performed using the unique six axis simulator at the University of Bath on twelve porcine lumbar functional spinal unit (FSU) specimens at 0.1 Hz under 400 N preload. The specimens were divided in two groups of six and each group was tested using one of the two testing protocols. To ensure the same conditions were used, tests were firstly carried out using the stiffness protocol, and the equivalent loading amplitudes were then applied using the flexibility protocol.

The results from the two protocols were analysed to produce load-displacement graphs and stiffness matrices. The load-displacement graphs of the translational axes show that the stiffness protocol produces less spread between specimens than the flexibility protocol. However, for the rotational axes there is a large variability between specimens in both protocols. Additionally, a comparison was made between the six main diagonal terms of the stiffness matrices using the Mann-Whitney test, since the data was not normally distributed. No statistically significant difference was found between the stiffness terms produced by each protocol. However, overall the stiffness protocol generally produced larger stiffnesses and less variation between specimens.

This study has shown that when testing porcine FSU specimens at 0.1 Hz and 400 N preload, there is no statistically significant difference between the main diagonal stiffness terms produced by the stiffness and the flexibility protocols. This is an important result, because it means that at this specific testing condition, using the same testing parameters and environment, both the stiffness and flexibility methods can be used to characterise the behaviour of the spine, and the results can be compared across the two protocols. Future work should investigate if the same findings occur at other testing conditions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 87 - 87
1 May 2017
Mahmoodi P Gheduzzi S Gill H
Full Access

Background

Understanding vertebral fracture is important in order to reduce fracture risk. Previous studies have used FE to investigate mechanical behaviour, typically using a linear material response. This study aimed to establish a novel model that could represent the plastic behaviour leading to fracture.

Method

Porcine vertebrae were mCT scanned and they were loaded to failure in a material test machine (Instron 5965). The specimens were then rescanned. From the first scan, specimen specific FE models were created (ScanIP, Simpleware, UK). Mesh convergence was studied and tetrahedral elements with an approximate element size of 0.7 were used for computational simulations. The relationship between greyscale values (GS) and Young's modulus (E) was optimised to match the experimental load displacement data using Ansys. Further, a plastic material response was modelled.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 28 - 28
1 Apr 2017
Rastetter B Wright S Gheduzzi S Miles A Clift S
Full Access

Background

Finite element (FE) models are frequently used in biomechanics to predict the behaviour of new implant designs. To increase the stability after severe bone loss tibial components with long stems are used in revision total knee replacements (TKR). A clinically reported complication after revision surgery is the occurrence of pain in the stem-end region. The aim of this analysis was the development of a validated FE-model of a fully cemented implant and to evaluate the effect of different tibial stem orientations.

Methods

A scanned 4th generation synthetic left tibia (Sawbones) was used to develop the FE-model with a virtually implanted fully cemented tibial component. The 500 N load was applied with medial:lateral compartment distributions of 60:40 and 80:20. Different stem positons were simulated by modifying the resection surface angle posterior to the tibias shaft axis. The results were compared with an experimental study which used strain gauges on Sawbones tibias with an implanted tibial TKR component. The locations of the experimental strain gauges were modelled in the FE study.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 104 - 104
1 Mar 2017
Pascual SR Keogh P Miles A Gheduzzi S
Full Access

Chronic back pain is the leading cause of disability worldwide, affecting millions of people. The source of pain is usually the intervertebral disc (IVD), thus there has been a growing interest in developing new improved implants such as disc replacements to treat the condition. However, to ensure the artificial devices being designed replicate the intact disc, the biomechanical behaviour of the IVD must be well understood (Adams and Dolan, 2005). The two most widely used testing procedures in the spinal industry to characterise the behaviour of the disc are the flexibility and the stiffness protocols (Stokes et al, 2002 and Panjabi et al, 1976).

For elastic specimens, the results produced by the flexibility and the stiffness protocols should in theory be identical. However, this does not hold true for inelastic specimens, such as the IVD. For this reason, the custom developed Spine Simulator (Holsgrove et al, 2014) at the University of Bath has been used to compare, in six degrees of freedom, the extent of the difference produced by these two testing protocols.

A biomechanical model of the IVD was tested, which consisted of two cylindrical nylon blocks attached together with a layer of nitrile rubber, representing respectively the vertebral bodies (VB) and the IVD. Two steel pins were inserted into the VB, spanning the thickness of the disc, to ensure the stiffness raise either side of the neutral zone was replicated by the model. Tests were performed at a frequency of 0.1 Hz using triangular wave cycles. The specimen was firstly subjected to the stiffness protocol, characterised by displacements of ±0.5 mm in anterior-posterior and lateral shear, ±0.35 mm in axial compression and ±1.5 deg in all rotational axes. The resulting loads were applied to the specimen when subjected to the flexibility protocol. In addition, the effect of a preload was studied by testing specimens with an axial compressive load of 250 N.

The stiffness matrix was calculated for each test and the main diagonal terms produced for the two protocols were compared using the Mann-Whitney test. Overall, results showed that there was a significant difference in the stiffness terms produced by the two protocols when tests were performed with (p ≤ 0.016) and without (p = 0.004) a preload. The only exception was found in the flexion-extension axis when the test was performed with a preload (p = 0.337). Additionally, differences were also recorded when comparing the shape and linearity of the load-displacement hysteresis curve (Figure 1) and the area enclosed by the curve.

This preliminary study has provided important information regarding the differences in the data produced by the flexibility and the stiffness protocols, it is therefore impractical to compare results produced using these two methods. To ensure that in the future results can be compared across laboratories, there is a need for a standardised testing procedure in the spinal industry.

For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 26 - 26
1 Oct 2016
Czerbak K Clift S Gheduzzi S
Full Access

Osteoarthritis is one of the most common musculoskeletal diseases. It involves degeneration and loss of articular cartilage, leading to a painful bone on bone articulation during movement. Numerical FEA models exist to predict the mechanical behaviour of degenerated cartilage. One of the limitations of these models arises from the poor validation that can be attained with traditional experimental data. This typically relies on comparison with global mechanical quantities such as total tissue strain, which mask the individual contributions originating from the different layers. In order to improve on this, an experimental method was developed to visualise the through-thickness behaviour of articular cartilage.

Four experiments were performed on hemi-cylindrical cartilage plugs, harvested from a porcine femoral head, and immersed in a fluid solution. An Indian ink speckle pattern was applied to the flat surface of each hemi-cylinder. The specimens were equilibrated in 2.5M NaCl solution, transferred to a custom designed testing rig, and a reference image of the tissue cross-section was taken.

The solution concentration was then decreased to 0.15M and, predictably, the tissue thickness changed. Images of the tissue cross section were taken every 60s for the duration of the experiment (3600s). All images were analysed using a DIC algorithm (Ncorr open-source 2D digital image correlation matlab program), and documented the strain changes through the tissue thickness as a function of time. The measured total strain in the tissue was consistent with that reported by Lai et al. (1991). However the present technique allows to quantify the strain contribution from any of the tissue layers or sublayer. This poses a significant advantage over traditional methods as resulting information can further the understanding of the factors contributing to the mechanical behaviour of the tissue and provides an ideal platform for validating more and more refined models of tissue behaviour.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 147 - 147
1 May 2016
Rastetter B Wright S Gheduzzi S Miles A Clift S
Full Access

There has been an unprecedented increase in total knee replacement in recent years. The UK national joint registry recorded over 80,000 total knee replacements per year with a generally successful outcome. Improvements in modern knee replacement designs and surgical techniques has resulted in more and more young and active patients having knee replacements. Their more active lifestyles and increased life expectancy is also leading to a rise in revision knee surgery. The most common reason for revision knee replacement is for loosening as a result of wear and/or bone resorption. Revision knee tibial components typically use long stems to increase the stability in the presence of the proximal bone loss associated with implant removal and loosening. The stem design has been cited as a possible cause of the clinically reported pain at the stem end region. The aim of this study was to experimentally validate a finite element (FE) model and the analysis different load conditions and stem orientations in a stemmed tibial component. CT-scans of a composite tibia (Sawbones) were utilized to form a multi-body solid consisting of cortical bone and cancellous bone with an intramedullary canal. A fully cemented tibial component (Stryker) was virtually implanted in the composite tibia with the stem-end centred in the cancellous bone. The tibial compartment loads were distributed with a 60:40 (Medial: Lateral) and 80:20 ratio to simulate a normal and varus type knee. Several stem-end positions were developed with the modification of the tibias proximal resection angle. An experimental study using strain gauges applied to the same composite tibia was used to compare the results with the FE-model. The model was validated with the strain gauged experimental test specimens demonstrating a similar pattern and magnitude of predicted strains. The simulation of different stem-end orientations revealed an increase in strain to the posterior cortex below the stem-end with the stem in direct contact to the posterior cortical bone. A tibial stem fully surrounded by cancellous bone demonstrated a small increase to the proximal strains. The simulation of a varus aligned knee with a 80:20 (Medial: Lateral) load distribution shifted strain overall to the medial side and revealed a large increase of strain to the posterior-medial in the proximity of the stem-end. The intensification of the load on one side of the tibial plateau, associated with a varus aligned knee, developed the largest increase in strain beneath the stem-end region and is possibly a factor in the reported pain after surgery. The stem in close proximity to the posterior cortical bone is also a possible contributing factor to pain due to the increase of strain in the vicinity of the stem-end.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 133 - 133
1 May 2016
Wright S Gheduzzi S Miles A
Full Access

Introduction

Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in high flexion situations such as stair climbing, it may be important to also represent the patellofemoral joint in all knee component testing.

This research aimed to assess the inclusion of the patellofemoral joint during in vitro testing of RTKR components by comparing tibial strain distribution in two experimental rigs. The first rig included the traditional tibiofemoral joint loading design. The second rig incorporated a combination of both joints to more accurately replicate physiological loading. Five implanted tibia specimens were tested on both rigs following the application of strain gauge rosettes to provide cortical strain data through the bone as an indication of the load transfer pattern. This investigation aimed to highlight the importance of the applied loading technique for pre-clinical testing and research of knee replacement components to guide future design and improve patient outcomes.

Methods

Five composite tibias (4th Generation Sawbones) were prepared with strain gauge rosettes (HBM), correctly aligned and potted using guides for repeatability across specimens. The tibias were then implanted with Stryker Triathlon components according to surgical protocol.

The first experimental rig was developed to replicate traditional knee loading conditions through the tibiofemoral joint in isolation. The second experimental rig produced an innovative method of replicating a combination of the tibiofemoral and patellofemoral joint loading scenarios. Both rigs were used to assess the load distribution through the tibia using the same tibia specimens and test parameters for comparison integrity (Figure 1). The cortical strains were recorded under an equivalent 500 N cyclical load applied at 10° of flexion by a hydraulic test machine.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 485 - 485
1 Nov 2011
Pollintine P Harrison S Patel A Tilley D Miles A Gheduzzi S
Full Access

Introduction: Vertebroplasty is used to treat painful osteoporotic vertebral fractures, and involves transpedicular injection of bone cement into the fractured vertebral body. During injection, the fluid cement begins to “harden” to a solid, enabling it to support mechanical load. But the mechanical efficacy of vertebroplasty can be improved by using cements which disperse evenly throughout the vertebral body during injection (1). We hypothesise that a better cement dispersion is obtained with cements that have a slower viscosity increase during hardening. We test this using a numerical model.

Methods: A computer model mimicking the plate- and rod-like morphologies of cancellous bone was loaded into a commercial fluid dynamics package (CFX). During injection, viscosity increased linearly with time to simulate the hardening behaviour of the cement (2). The rate of viscosity increase was altered to mimic the hardening behaviour of 5 different cements, with the rates of increase chosen to encompass the hardening behaviour of commercial vertebroplasty cements (1). Simulations were run for 13 seconds, with cement injection at 1.5 mm/s. Cement dispersion was quantified by the proportion of marrow replaced by cement during injection. Injection pressure was also recorded.

Results: Injection pressure increased with time (p< 0.001), and maximum pressure correlated with the rate of viscosity increase (r2=0.7). The proportion of marrow replaced at the end of the experiment was inversely proportional to the rate of viscosity increase (r2=0.85). Cements with a rapidly increasing viscosity do not fully infiltrate regions of bone with plate-like morphologies, leading to a poorer cement dispersion.

Conclusion: Cements with slower hardening characteristics are dispersed more evenly throughout cancellous bone. Such cements may provide safer and more effective vertebroplasty procedures.

Conflicts of Interest: None

Source of Funding: Bupa Foundation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 4 - 4
1 Jan 2011
McCarthy MJH Long R Weston R Gheduzzi S Keenan J Miles A
Full Access

Objectives: To compare the biomechanical properties of lag screw insertion in a laboratory model. Two blades, the Synthes Dynamic Helical Hip Screw (DHHS) and Proximal Femoral Nail Antirotation (PFNA), and two screws, the Synthes Dynamic Hip Screw (DHS) and Stryker Gamma 3 lag screw, were compared.

Setting: Orthopaedic biomechanics laboratory.

Design: Insertion testing was carried out in high and low density polyurethane foam mounted and attached to a Zwick Roell Amsler Hydrowin.

Outcome Measures: The axial load and torque during insertion of the implants was measured.

Results: The force required to insert the DHHS and PFNA blades was greater than the DHS and Gamma 3 screws into both low and high density foam. The force required to insert the DHHS and PFNA blades into high density foam was greater than low density foam. The torque required to insert the DHHS and PFNA blades into high density foam was less than that to insert the DHS and Gamma 3 screws. The torque required to insert the DHS and Gamma 3 screws into low density foam was less than the DHHS and PFNA blades. The torque during insertion of the DHHS and PFNA blades seemed to be independent of foam density.

Conclusions: The insertional properties of blades are significantly different to screws and this may have clinical importance.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 238 - 238
1 Mar 2010
Pollintine P Harrison S Patel A Tilley D Miles A Gheduzzi S
Full Access

Introduction: Vertebroplasty is increasingly used in the treatment of painful osteoporotic vertebral fractures, and involves transpedicular injection of bone cement into the fractured vertebral body. Effective infiltration of the vertebral body cancellous bone by the cement is determined by the cement viscosity, and by the permeability of the bone. However, it is unclear how permeability is influenced by regional variations in porosity and architecture of bone within the vertebral body. The aim of the present study was to investigate how permeability is influenced by porosity and architecture of cancellous bone mimics.

Methods: Cylindrical polyamide mimics of two types of cancellous bone structures were fabricated using selective laser sintering (SLS) techniques. Structure A had the rod-like vertical and horizontal trabeculae typical of the anterior vertebral body, while structure B had oblique trabeculae typical of the posterior-lateral vertebral body. Structure B had fewer trabeculae than A. Porosities of 80 and 90% were represented for both structures. Golden syrup, which has a viscosity similar to bone cement1, was injected into the mimics at a constant speed using a ram driven by a materials testing machine. Pressure drop measurements across the mimic, made using a differential pressure transducer, were obtained at five different injection speeds. Permeability of each mimic was calculated from these measurements2. Two more repeat permeability measurements were performed on each mimic.

Results: Repeat measurements were always within 12% of the mean value. For structure A the mean permeabilities were 1.26×10-7 and 1.82×10-7m2 for the 80 and the 90% porosity mimics respectively. The corresponding mean permeabilities for structure B were 1.92×10-7 and 2.86×10-7m2.

Discussion: These preliminary results indicate that higher permeabilities occur in structures with higher porosities, and with structures containing fewer trabeculae that are arranged obliquely. Since permeability is a determinant of cement infiltration, taking into account patient-specific bone architecture parameters may improve the safety and clinical outcome of vertebroplasty. Future experiments will clarify in more detail the architectural parameters that have greatest effect on permeability.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 532 - 532
1 Aug 2008
Lankester BJA Sabri O Gheduzzi S Stoney JD Miles AW Bannister GC
Full Access

Introduction: Inadequate cementation of the acetabular component in hip replacement surgery leads to early aseptic loosening, the most common cause of revision. The optimum method of cementation has not been fully evaluated. This study aimed to determine the effect of the acetabular component flange on mean and peak pressure during component insertion.

Method: A 53mm deepened hemisphere was machined from aluminium. Pressure transducers were positioned at the rim, at 45 degrees, and at the base. Polyethelene acetabular components of different sizes and flange designs were mounted onto a materials testing machine and inserted at a constant rate into Palacos R cement within the aluminium hemisphere. Insertion was stopped at a pre-determined point when an even cement mantle was achieved. The same components were then tested without a flange. Each test was repeated six times. Output data from the transducers was analysed.

Results: Components with a flange create a mean pressure 6–18 times higher at the rim than those without a flange. At the base pressures are 2–4 times higher. A stiffer flange generates higher peak and mean pressures than a more malleable flange. Delaying insertion by one minute does not increase the pressures achieved unless a flange is used.

Discussion: These results strongly support the use of a flange to contain cement during insertion of the acetabular component. Unflanged components fail to achieve satisfactory mean or peak pressures, even if insertion is delayed. This is likely to result in poor cement penetration into bone and reduced longevity of interface fixation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 377 - 377
1 Jul 2008
Webb J Gheduzzi S Spencer R Learmonth I
Full Access

The visco-elastic behaviour of acrylic bone cement is a key feature of cement-implant performance. The ability of the cement to creep in conjunction with a force-closed design of stem (collarless polished taper) affords protection of the vital bone-cement interface. Most surgeons in the UK use antibiotic-laden PMMA in primary total joint arthroplasty. In revision surgery the use of bespoke antibiotic-cement combinations is common.

The aim of this study was to elicit the effect of antibiotics upon the physical properties of bone cement.

Methods: The static properties of the cements were assessed following protocols described in ISO 5833: 2002, while the viscoelastic properties of the cement were measured with in-house developed apparatus in quasi-static conditions. Creep tests were performed in four point bending configuration over a 72 hour period in physiological conditions. Porosity was measured on the mid cross section of the creep samples using a digital image technique.

The cements used were Palacos R40 and Palacos R with gentamicin. The antibiotics added included fucidin, erythromycin, teicoplanin and vancomycin in 500mg powder aliquots up to a maximum of 1g per 40 g mix.

All data were analysed using ANOVA with Bonfer-roni post-hoc test. Pearson’s correlation coefficient was used to investigate the association between physical factors (SPSS).

Results: The static and working properties did not vary significantly with antibiotic additions. The mean creep of the cement increased in line with the amount of antibiotic added. The specific antibiotic was not relevant. The differences were statistically significant. Mean porosity also increased with antibiotic mass. There was a linear relationship between cement porosity and creep!

Conclusions: Despite modern mixing techniques the porosity of bone cement increases with antibiotic additions. This increased porosity is related to the greater creep seen in the cement. Surgeons should apply these findings when planning revision hip surgery.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 382 - 383
1 Jul 2008
Webb J Gheduzzi S Spencer R Miles A Learmonth I
Full Access

The visco-elastic behaviour of cement, is a key feature of cement-implant performance in total hip arthroplasty.

The aim of this study was to describe the creep behaviour of the leading plain bone cements under standardised physiological in-vitro conditions.

Methods: Cements were mixed under vacuum conditions as per manufacturers instructions. Moulds were used to to produce beams of standard dimensions. These were stored in saline at 37oC for 21 days to ensure thorough polymerisation. Under the same conditions, the beams were tested for 72 hours in a 12-station quasi-static creep rig, using a four-point bending configuration. The rig applied a constant stress of 8MPa to each beam and the deflection was recorded at 8-minute intervals by a data-logging device. The porosity was measured in the mid-cross section of each beam sample using a digital image technique.

The cements tested were Palacos R, CMW1 and Smartset GHV and Surgical Simplex P.

All data were analysed using ANOVA with Bonfer-roni post-hoc test (SPSS).

Results: Palacos R exhibited the highest mean deflection at 72 hours (0.86+/- 0.21mm) followed by Surgical Simplex P (0.85 +/- 0.18mm), CMW1 (0.72 +/- 0.09mm) and Smartset GHV (0.60 +/- 0.16mm). The difference between the two DePuy cements and Palacos R (p=0.03) and Surgical Simplex P (p=0.04) were statistically sig-nificant. None of the beams failed during the test. The creep behaviour correlated with the cross-sectional porosity measurements.

Conclusions: This study has shown that there are sig-nificant differences in the creep bahaviour of the leading medium and high viscosity bone cements. In particular Palacos R and Surgical Simplex P demonstrate ‘High’ creep and the DePuy cements ‘Low’ creep. Creep appears sensitive to subtle changes in the composition of the material. This may be reflected in the clinical behaviour of different bone cements and stresses the importance of the time-dependent properties of PMMA.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 382 - 383
1 Oct 2006
Clements J Gheduzzi S Webb J Schmotzer H Learmonth I Miles A
Full Access

Introduction: Immediate postoperative stability of cementless hip stems is one of the key factors for the long-term success of total hip replacement. The ability to discriminate between stable and unstable stems in the laboratory constitutes a desirable tool for the industry, as it would allow the identification of unsuitable stem designs prior to clinical trials. The use of composite femora for stability investigations is wide spread [1,2] even though their use in this application is yet to be validated. This study is aimed at establishing whether Sawbones composite femora are suitable for the assessment of migration and micromotion of a cementless hip stem. The stability of two SL Plus stems (Precision Implants, CH) implanted into Sawbone was compared to that of two SL Plus stems implanted into cadaveric femora. Ethical approval was obtained for the harvest and use of cadaveric material.

Methods: Stability was assessed in terms of micromotion and migration. Micromotion was defined as the recoverable movement of the implant relative to the bone under cyclic loading. Migration was defined as the non-recoverable movement of the implant with respect to the surrounding bone. Movement of the implant with respect to the surrounding bone was monitored at two locations on the lateral side of the stem by means of two custom made transducers based on the concept described by Berzins et al [3]. Each femur was tested in two different sinusoidal loading configurations: single leg stance (SLS-11° of adduction and 7° of flexion) [4] loaded up to 400N and stair climbing (SC-11° of adduction and 32° of flexion) loaded up to 300N. The effect of the abductor muscles was included in the model [5]. Each test consisted of 200 loading cycles applied at 50 Hz. The captured data was post-processed by a MATLAB routine and converted into translations and rotations of the stem with respect to the bone.

Results: The proximal part of the implant was subject to the highest amplitudes of micromotion in both loading configurations independent of the host. During SLS the largest micromotion was measured in the direction of the axis of the femur, this amplitude was in the order of 20 μm for the stems implanted in sawbones and varied between 13 and 39 μm for the stems implanted in cadaveric femora. The migration of the implants was minimal both in SLS and SC for both hosts with values measured in the sawbones model nearly on order of magnitude smaller than the cadaveric. In the case of SLS the prevalent movement consisted of a translation along the axis of the bone, while during SC the rotations became prevalent.

Discussion: This study has demonstrated that Sawbones provide an effective model to establish micromotion with oscillation patterns and orders of magnitiude similar to cadaveric bone. However the migration is much more dependent on the quality of fit and the internal geometry of the femur and therefore more caution should be placed on interpreting migration data from Sawbones models.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 65 - 66
1 Mar 2006
Gheduzzi S Webb J Wylde V Spencer R Learmonth I Miles A
Full Access

The static properties of bone cements have been widely reported in the literature (Lewis, 1997, Khun, 2000, Armstrong 2002). Commercial bone cements are expected to perform above the minimum values in static tests specified by ISO 5833: 2002. It has been suggested that the viscoelastic properties of bone cement, such as creep and stress relaxation, might bear more relevance to the in-vivo behaviour of the cement-implant construct (Lee 2002). This study aimed to compare numerous properties of Simplex P, Simplex Antibiotic and Simplex Tobramycin and identify those properties most sensitive to subtle changes in cement composition. The three cements were chosen on the basis that they are characterised by the same liquid and powder compositions, the only difference being represented by the type and amount of added antibiotics. In Simplex Antibiotic the additives are 0.5g Erythromycin and 3 million I.U. Colistin, while in Antibiotic Simplex with Tobramycin the only additive is 0.5g of Tobramycin. The static properties of the cements were assessed following protocols described in ISO 5833: 2002, while the viscoelastic properties of the cement were measured with in-house developed apparatus in quasi-static conditions. Creep and stress relaxation tests were performed in four point bending configuration. Porosity was measured on the mid cross section of the creep samples using a digital image technique. All cements exhibited properties compatible with the ISO standard, but in plain Simplex the ISO minimum for bending and compressive strength was within the variation of the batches tested. Bending strength measurements were the least sensitive to differences in the cements. Plain Simplex displayed lower bending and compressive strength but higher bending modulus than the antibiotic laden options. The bending modulus could only discriminate between Simplex P and Simplex Antibiotic (p=0.02). Differences in the compressive strength of the three cements were significant, with the plain option being the weakest. Stress relaxation only discriminated between plain and Tobramycin loaded cement (p=0.028), while creep was more sensitive to differences and allowed distinction between plain and antibiotic loaded bone cements. The creep behaviour correlated with the cross sectional porosity measurements. This study demonstrated that the static tests specified by the current international standard are not as sensitive to subtle changes in the composition of the material as the time temperature dependent parameters characteristic of creep and stress relaxation. The authors advocate the evaluation of time and temperature dependent characteristics as a complement to the current standard.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 72 - 72
1 Mar 2006
Phelps R Gheduzzi S Learmonth I Miles A
Full Access

Aseptic loosening remains a long-term problem in total hip replacement. This phenomenon is prevalent even if modern cementing techniques seem to have reduced its incidence. Osteolysis has been deemed as a disease of access to fixation interfaces (1), either the stem- or bone-cement interface in hip replacement. This can be attributed in part to the quality of the cement in the proximity of the stem. It has been noted that due to thermal effects, polymerisation of bone cement starts at the bone-cement interface and gradually moves inwards towards the stem.

Femoral component heating was first proposed as a method to reduce the curing time of bone cement (2). This practice was later found to reduce the porosity at the stem-cement interface (3) and also to improve the interface shear strength (4). This study aimed to investigate the effect of femoral stem heating on two bone cements (Simplex P (Stryker) and Palacos R (Biomet Merck)) over a range of mantle thicknessess.

The model femora used for this study were maintained at a constant temperature of 37C while the stem temperature varied between 21, 37 and 44C. The femoral moulds were formed from dental plaster with a similar thermal conductivity to bone. Mould sizes were created to generate cement mantles of 2, 5 and 7.5mm thickness.

In the 2mm Simplex P cement mantles there was very little porosity evident. It was concentrated in the proximity of the stem when the component was kept at 21C and disappeared as the stem was heated to higher temperatures. Minimal porosity could be identified in the thicker mantles with no apparent differences between temperatures. There were no temperature trends evident from within this cement group. Palacos R cement has been reported to have a higher porosity than Simplex in a number of studies (5, 6). With the 2mm Pala-cos mantles, the increased stem temperatures reduced the porosity at the stem-cement interface. There was however no obvious difference between the 37 and 44C temperatures, where porosity seemed to be evident in the midsection of the mantle. This trend was also identified in the thicker cement mantles. The porosity did not extend out to the cement-bone interface under any conditions.

This study analyses the changes in porosity across the mantle of the cement as the temperature of the stem component is increased. The initial results confirm that the porosity at the stem cement mantle is decreased but indicate that the porosity within the body of the cement is increased as the temperature of the stem is increased.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 263 - 263
1 Mar 2004
Heal J Gheduzzi S Learmonth I Miles A
Full Access

Aims: Optimisation of femoral stem load transfer potentially encourages new bone growth. The effect of increasing the taper angle of a highly polished double tapered stem on stability and hoop strain is investigated.

Methods: An in-vitro model femur was instrumented at 3 levels with 10 strain gauges, proximally (channel 1–4), mid taper level (channel 5–8) and distally (channel 9–10). Under controlled conditions surgical Simplex P cement (Stryker Howmedica Osteonics) was prepared and introduced into the canal of the model femur. The Exeter (Stryker Howmedica Osteonics) stem with centraliser was inserted using a standardised technique. The cementation process was repeated 5 times for each stem. The mantle and stem were subjected to cyclic loading at 1 Hz to 0.5kN using an Instron 8511 servohydraulic materials testing machine. The subsidence of the stem and hoop strains generated were recorded. Each experiment was repeated 6 times.

Results: The average subsidence of all the stems was 0.2mm with a standard deviation varying between 0.1 and 0.2. All the stems showed similar patterns of loading, with no significant difference.

Conclusions: The results suggest that within a purely cemented environment the taper angle of the stem used is irrelevant with regard to the hoop strain and the stability of the construct. The authors therefore suggest that size of stem does not matter.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 75 - 76
1 Jan 2004
Lankester BJA Stoney J Gheduzzi S Miles AW Bannister GC
Full Access

Introduction: Aseptic loosening is the main cause of revision in hip replacement surgery. Improved cementation techniques have reduced the rate of loosening of the femoral component, leaving the cemented acetabular cup as the major problem, with reported loosening rates as high as 25% at 12 – 15 years. The ideal method of acetabular cementation has not been fully evaluated.

Aim: To determine the ideal thickness of cement mantle to resist torsional forces.

Method: Mahogany blocks with a 54mm hemispherical hole were used to simulate an acetabular socket. Machined aluminium cups were created in 5 sizes (52mm to 44mm) to give a cement mantle that varied in size from 1mm to 5mm. Three 10mm keyholes were drilled in the blocks and appropriate-sized spacers were inserted to ensure the mantle was accurate and even. Silicone grease was used to prevent any micro-interlock between cement and wood. The cups were then cemented into the wooden blocks using vacuum-mixed Palacos R cement and left to cure in air for 7 days at 37 °C. The constructs were tested to failure using a servo-hydraulic testing machine. Each experiment was repeated six times.

Results: The stiffness of the cement mantle varied according to thickness as follows:

Thickness (mm) Stiffness (Nm / Degree)
1 58 +/− 4
2 37 +/− 1
3 39 +/− 1
4 25 +/− 0.3
5 24 +/− 0.3

Discussion: A stiffer cement mantle will transfer more torque to the bone-cement interface, possibly leading to earlier loosening of the prosthesis. This biomechanical analysis suggests that surgeons should aim to achieve a mantle at least 2mm thick. There appears to be little further mechanical advantage gained if the mantle is increased in thickness beyond 4mm.