Advertisement for orthosearch.org.uk
Results 1 - 50 of 71
Results per page:

Aims. This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. Methods. Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. Results. We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and normal knee cartilage. A total of 75 dysregulated lncRNA-miRNA interactions and 711 dysregulated miRNA-mRNA interactions were obtained in the ceRNA network, including ten DElncRNAs, 69 miRNAs, and 72 DEmRNAs. Similarly, 1,330 dysregulated lncRNA-mRNA interactions were used to construct the co-expression network, which included ten lncRNAs and 407 mRNAs. We finally identified seven hub lncRNAs, named MIR210HG, HCP5, LINC00313, LINC00654, LINC00839, TBC1D3P1-DHX40P1, and ISM1-AS1. Subsequent enrichment analysis elucidated that these lncRNAs regulated extracellular matrix organization and enriched in osteoclast differentiation, the FoxO signalling pathway, and the tumour necrosis factor (TNF) signalling pathway in the development of OA. Conclusion. The integrated analysis of the ceRNA network and co-expression network identified seven hub lncRNAs associated with OA. These lncRNAs may regulate extracellular matrix changes and chondrocyte homeostasis in OA progress. Cite this article:Bone Joint Res. 2020;9(3):90–98


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims. Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Methods. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p. Results. The expression of PCBP1-AS1 was pre-eminent in OP tissues and decreased throughout the development of human bone marrow-derived mesenchymal stem cells (hBMSCs) into osteoblasts. PCBP1-AS1 knockdown and overexpression respectively promoted and suppressed hBMSC proliferation and osteogenic differentiation capacity. Mechanistically, PCBP1-AS1 sponged miR-126-5p and consequently targeted PAK2. Inhibiting miR-126-5p significantly counteracted the beneficial effects of PCBP1-AS1 or PAK2 knockdown on hBMSCs’ ability to differentiate into osteoblasts. Conclusion. PCBP1-AS1 is responsible for the development of OP and promotes its progression by inducing PAK2 expression via competitively binding to miR-126-5p. PCBP1-AS1 may therefore be a new therapeutic target for OP patients. Cite this article: Bone Joint Res 2023;12(6):375–386


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims. Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods. RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results. Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion. Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535


Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results. HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion. The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes. Cite this article: Bone Joint Res 2023;12(7):433–446


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 639 - 651
7 Sep 2022
Zou Y Zhang X Liang J Peng L Qin J Zhou F Liu T Dai L

Aims

To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms.

Methods

Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 61 - 72
15 Feb 2022
Luobu Z Wang L Jiang D Liao T Luobu C Qunpei L

Aims

Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study.

Methods

In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 652 - 668
7 Sep 2022
Lv G Wang B Li L Li Y Li X He H Kuang L

Aims

Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages.

Methods

Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims

Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD.

Methods

We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 290 - 303
1 Jul 2019
Li H Yang HH Sun ZG Tang HB Min JK

Objectives. The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). Methods. The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo. Results. In total, 739 mRNAs, 1152 lncRNAs, and 42 circRNAs were found to be differentially expressed in OA cartilage tissue. Among these, we identified 18 overlapping DEGs and targets of DELs, and the top ten DELs were screened by expression profile analysis as candidate OA-related genes. WISP2, ATF3, and CHI3L1 were significantly increased in both normal versus OA tissues and normal versus interleukin (IL)-1β-induced OA-like cell models, while ADAM12, PRELP, and ASPN were shown to be significantly decreased. Among the identified DELs, we observed higher expression of ENST00000453554 and MSTRG.99593.3, and lower expression of MSTRG.44186.2 and NONHSAT186094.1 in normal versus OA cells and tissues. Conclusion. This study revealed expression patterns of coding and noncoding RNAs in OA cartilage, which added sets of genes and noncoding RNAs to the list of candidate diagnostic biomarkers and therapeutic agents for OA patients. Cite this article: H. Li, H. H. Yang, Z. G. Sun, H. B. Tang, J. K. Min. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res 2019;8:290–303. DOI: 10.1302/2046-3758.87.BJR-2018-0297.R1


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122–133


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 86 - 86
2 Jan 2024
Balmayor E Joris V van Griensven M
Full Access

Bone tissue is known to possess an intrinsic regeneration potential. However, in cases of major injury, trauma, and disease, bone loss is present, and the regeneration potential of the tissue is often impaired. The process of bone regeneration relies on a complex interaction of molecules. MicroRNAs (miRNA) are small, non-coding RNAs that inhibit messenger RNAs (mRNA). One miRNA can inhibit several mRNAs and one mRNA can be inhibited by several miRNAs. Functionally, miRNAs regulate the entire proteome via the local inhibition of translation. In fact, miRNA modulation has been shown to be involved in several musculoskeletal diseases. 1. In those pathologies, they modulate the transcriptional activity of mRNAs important for differentiation, tissue-specific activity, extracellular matrix production, etc. Because of their function in inhibiting translation, miRNAs are being researched in many diseases and are already being used for interventional treatment. 2. Bone tissue and its related conditions have been widely investigated up to this day. 1,3. This talk will focus on the relevancy of miRNAs to bone tissue, its homeostasis, and disease. After, examples will be given of how miRNAs can be used in bone regeneration and diseases such as osteoporosis and osteosarcoma. The use of miRNAs in both, detection and therapy will be discussed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 87 - 87
2 Jan 2024
Moura S Olesen J Barbosa M Soe K Almeida M
Full Access

Osteoclasts (OCs) are multinucleated cells that play a pivotal role in skeletal development and bone remodeling. Abnormal activation of OCs contributes to the development of bone-related diseases, such as osteoporosis, bone metastasis and osteoarthritis. Restoring the normal function of OCs is crucial for bone homeostasis. Recently, RNA therapeutics emerged as a new field of research for osteoarticular diseases. The aim of this study is to use non-coding RNAs (ncRNAs) to molecularly engineer OCs and modulate their function. Specifically, we investigated the role of the microRNAs (namely miR-16) and long ncRNAs (namely DLEU1) in OCs differentiation and fusion. DLEU1/DLEU2 region, located at chromosome 13q14, also encodes miR-15 and miR-16. Our results show that levels of these ncRNA transcripts are differently expressed at distinct stages of the OCs differentiation. Specifically, silencing of DLEU1 by small interfering RNAs (siDLEU1) and overexpression of miR-16 by synthetic miRNA mimics (miR-16-mimics) led to a significant reduction in the number of OCs formed per field (OC/field), both at day 5 and 9 of the differentiation stage. Importantly, time-lapse analysis, used to track OCs behavior, revealed a significant decrease in fusion events after transfection with siDLEU1 or miR-16-mimics and an alteration in the fusion mode and partners. Next, we investigated the migration profile of these OCs, and the results show that only miR-16-mimics-OCs, but not siDLEU-OCs, have a lower percentage of immobile cells and an increase in cells with mobile regime, compared with controls. No differences in cell shape were found. Moreover, mass-spectrometry quantitative proteomic analysis revealed independent effects of siDLEU1 and miR-16-mimics at the protein levels. Importantly, DLEU1 and miR-16 act by distinct processes and pathways. Collectively, our findings support the ncRNAs DLEU1 and miR-16 as therapeutic targets to modulate early stages of OCs differentiation and, consequently, to impair OC fusion, advancing ncRNA-therapeutics for bone-related diseases. Acknowledgements: Authors would like to thank to AO CMF / AO Foundation (AOCMFS-21-23A). SRM and MIA are supported by FCT (SFRH/BD/147229/2019 and BiotechHealth Program; CEECINST/00091/2018/CP1500/CT0011, respectively)


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims. Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA. Methods. Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro. Results. IL-38 was highly expressed in lentivirus vector-mediated OA mice. Meanwhile, injection of exogenous IL-38 to OA mice alleviated the cartilage damage, and reduced the levels of proinflammatory factors and chondrocyte apoptosis. TP53 was responsible for lncRNA H19-mediated upregulation of IL-38. Furthermore, it was found that the anti-inflammatory effects of IL-38 were achieved by its binding with the IL-36 receptor (IL-36R). Overexpression of H19 reduced the expression of inflammatory factors and chondrocyte apoptosis, which was abrogated by knockdown of IL-38 or TP53. Conclusion. Collectively, our findings evidenced that upregulation of lncRNA H19 attenuates inflammation and ameliorates cartilage damage and chondrocyte apoptosis in OA by upregulating TP53, IL-38, and by activating IL-36R. Cite this article: Bone Joint Res 2022;11(8):594–607


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims. Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. Methods. The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene. Results. Melatonin promoted apoptosis of RAW264.7 cells and increased the expression of BMAL1 to inhibit the activation of ROS and phosphorylation of mitogen-activated protein kinase (MAPK)-p38. Silencing the bmal1 gene weakened the above effects of melatonin. After that, we used dehydrocorydaline (DHC) to enhance the activation of MAPK-p38, and the effects of melatonin on reducing ROS levels and promoting apoptosis of RAW264.7 cells were also blocked. Then, we constructed a mouse model of postmenopausal osteoporosis and administered melatonin. The results showed that melatonin improves bone loss in ovariectomized mice. Finally, we established a model of overexpression of the bmal1 gene, and these results suggest that the bmal1 gene can regulate ROS activity and change the level of the MAPK-p38 signalling pathway. Conclusion. Our study confirmed that melatonin promotes the apoptosis of RAW264.7 cells through BMAL1/ROS/MAPK-p38, and revealed the therapeutic effect and mechanism of melatonin in postmenopausal osteoporosis. This finding enriches BMAL1 as a potential target for the treatment of osteoporosis and the pathogenesis of postmenopausal osteoporosis. Cite this article: Bone Joint Res 2023;12(11):677–690


Bone & Joint Research
Vol. 9, Issue 11 | Pages 798 - 807
2 Nov 2020
Brzeszczyńska J Brzeszczyński F Hamilton DF McGregor R Simpson AHRW

MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798–807


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 79 - 79
4 Apr 2023
Mao J Ding Y Huang L Wang Q Ding L
Full Access

Previous studies showed that telo-peptides degraded from type II collagen, a type of collagen fragments, could induce cartilage damage in bovine stifle joints. We aim to investigate the role of integrins (ITGs) and matrix metalloproteinases (MMPs) in collagen fragment-induced human cartilage damage that is usually observed in osteoarthritis (OA). We hypothesized that N-telopeptide (NT) derived from type II collagen could up-regulate the expression of β1 integrin (ITGB1) and then MMPs that may lead to osteoarthritic cartilage damage. Human chondrocytes were isolated from femoral head or tibial plateau of patients receiving arthroplasty (N = 24). Primary chondrocyte cultures were either treated with 30 µM NT, or 30 µM scrambled NT (SN), or PBS, or left untreated for 24 hrs. Total proteins and RNAs were extracted for examination of expression of ITGB1 and MMPs-3&13 with Western blotting and quantitative real-time PCR. Compared to untreated or PBS treated chondrocytes, NT-treated chondrocytes expressed significantly higher levels of ITGB1 and MMPs-3&-13. However, SN also up-regulated expression of ITGB1 and MMP-13. ITGB1 and MMPs-3&-13 might mediate the catalytic effect of NT, a type of collagen fragments, on human cartilage damage that is a hallmark of OA


Bone & Joint Research
Vol. 9, Issue 8 | Pages 501 - 514
1 Aug 2020
Li X Yang Y Sun G Dai W Jie X Du Y Huang R Zhang J

Aims. Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method. Methods. We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets. Results. Four noteworthy RA-related modules were identified, revealing the immune- and infection-related biological processes and pathways involved in RA. HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DRB1, BLNK, BTK, CD3D, CD4, IL2RG, INPP5D, LCK, PTPRC, RAC2, SYK, and VAV1 were recognized as the key hub genes with high connectivity in gene regulation networks and gene pathway networks. Moreover, the long noncoding RNAs (lncRNAs) in the RA-related modules, such as FAM30A and NEAT1, were identified as the indispensable interactors with the hub genes. Finally, candidate drugs were screened by developing a cumulatively scoring approach based on the selected modules. Niclosamide and the other compounds of T-type calcium channel blocker, IKK inhibitor, and PKC activator, HIF activator, and proteasome inhibitor, which harbour the similar gene signature with niclosamide, were promising drugs with high specificity and broad coverage for the RA-related modules. Conclusion. This study provides not only the promising targets and drugs for RA but also a novel methodological insight into the target and drug screening. Cite this article: Bone Joint Res 2020;9(8):501–514


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 119 - 119
11 Apr 2023
Peffers M Anderson J Jacobsen S Walters M Bundgaard L Hackle M James V
Full Access

Joint tissues release extracellular vesicles (EVs) that potentially sustain joint homeostasis and contribute to osteoarthritis (OA) pathogenesis. EVs are putative novel therapeutics for OA, and transport biologically active molecules (including small non-coding RNAs (SNCRNAs)) between cells. This study identified altering SNCRNA cargo in EVs in OA which may act as early diagnostic markers and treatment targets. OA was surgically induced in four skeletally mature Standardbred horses using an osteochondral fragment model in the left middle carpal joint. The right joint underwent sham surgery. Synovial fluid (SF) and plasma were obtained weekly throughout the 70-day study. EVs were isolated using size exclusion chromatography and characterised using nanoparticle tracking (Nanosight), and exosome fluorescence detection and tetraspanin phenotyping (Exoview). RNA was extracted from EVs derived from SF (sham and OA joints) and plasma collected at days 10, 35, 42, 49, 56, 63, and subjected to small RNA sequencing on a NovaSeq SP100 flow cell (Illumina). Nanosight-derived EV characteristics of size and concentration were not significantly different following disease induction. The diameter of the temporal population of plasma and SF-derived exosomes changed significantly for CD9 and CD81 following OA induction with significant temporal, and disease-related changes in CD63 and CD81 protein expressin in plasma and SF. In SF and plasma-derived EVs snoRNAs, snRNAs, tRNAs, lncRNA, y-RNA, piRNAs and scRNA were found. Following pairwise analysis of all-time points we identified 27 miRs DE in plasma and 45 DE miRs in SF. Seven were DE in plasma and SF; miR-451, miR-25, miR-215, miR-92a, miR-let-7c, miR-486-5p, miR-23a. In plasma and SF 35 and 21 snoRNAs were DE with four DE in plasma and SF; U3, snord15, snord46, snord58. This work has identified alterations to OA EV sncRNAs in plasma and SF providing a greater understanding of the role of EVs in early OA


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases. Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIV | Pages 18 - 18
1 Apr 2012
Miyachi M Yoshida H Fujiki A Yagyu S Kikuchi K Tsuchiya K Imamura T Iehara T Hosoi H
Full Access

Aim. The recent discovery of small non-coding RNAs, so-called micro RNAs (miRNAs), has provided new insights into cancer diagnosis. Several studies have shown that profiles of miRNA expression differ between normal tissue and tumour tissue and vary among tumour types. To exploit this difference, we evaluated the feasibility of using muscle-specific miRNAs (miR-1, 133a, 133b, 206) as biomarkers of rhabdomyosarcoma (RMS). Method. Total RNA was extracted from 16 cell lines (7 RMS, 4 neuroblastoma, 3 Ewing sarcoma and 2 malignant rhabdoid tumour) and 21 tumour specimens (7 RMS, 1 Ewing sarcoma, 4 undifferentiated sarcoma, 1 osteosarcoma, 1 alveolar soft part sarcoma, 2 neuroblastoma, 2 Wilms tumour, 1 malignant rhabdoid tumour, 1 adrenal carcinoma and 1 retinoblastoma). miRNA was quantified by real-time RT-PCR. The expression levels of miRNAs were calculated utilizing the delta-delta Ct method, normalised to the level of miR-16, and compared using the Mann-Whitney U test. Results. The expression levels of muscle-specific miRNAs in the RMS cell lines were significantly higher (p<0.01) than those in neuroblastoma, Ewing sarcoma and malignant rhabdoid tumour cell lines. miR-206 was most abundantly expressed and miR-1 was least abundantly expressed among muscle-specific miRNAs in RMS cell lines. The expression levels of musclespecific miRNAs in RMS tumour specimens were significantly higher (p<0.01) than those in other pediatric tumours. The difference in the expression levels between RMS and other tumours was largest in miR-206. Conclusion. The expression levels of muscle-specific miRNAs were significantly elevated in RMS cell lines and tumour specimens. Muscle-specific miRNAs, especially miR-206, can be potential biomarkers for RMS diagnosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 60 - 60
1 Nov 2018
Chen Y
Full Access

When joints sustain injury, the release of inflammation cytokines can cleavage matrix proteins and result in cartilage degradation and the subsequent osteoarthritis. RNA therapeutics emerging recently is a very promising approach to efficiently and specifically inhibit disease gene expression. However, the major challenge is how to deliver therapeutic RNA into joint and cartilage. Janus base nanotubes are self-assembled from synthetic Janus bases inspired from DNA base pairs. Based on the charge interaction, we are able to “sandwich” small RNAs among Janus base nanotubes to form tiny, nano-rod shaped delivery vehicles. Such vehicles can be engineered into different sizes and shapes. We have found that short and slim morphologies can greatly increase their penetration to extracellular matrix and delivery into “difficult-to-reach” tissues, such as cartilage and brain. Moreover, by delivering therapeutic siRNA, we have demonstrated its high-efficacy in inhibiting expression of an inflammatory regulator, Interleukin-1 receptor (IL-1R) in articular cartilage. Moreover, the inhibition effect is long-lasting so that joint inflammation and cartilage degradation caused by meniscus injury are greatly inhibited in a mouse model. Therefore, the Janus base nanotubes present a great potential in engineering into nano-structures for RNA delivery. Such approach may become an effective therapeutic against joint inflammation and arthritis


Bone & Joint Open
Vol. 5, Issue 6 | Pages 479 - 488
6 Jun 2024
Paksoy A Meller S Schwotzer F Moroder P Trampuz A Imiolczyk J Perka C Hackl M Plachel F Akgün D

Aims

Current diagnostic tools are not always able to effectively identify periprosthetic joint infections (PJIs). Recent studies suggest that circulating microRNAs (miRNAs) undergo changes under pathological conditions such as infection. The aim of this study was to analyze miRNA expression in hip arthroplasty PJI patients.

Methods

This was a prospective pilot study, including 24 patients divided into three groups, with eight patients each undergoing revision of their hip arthroplasty due to aseptic reasons, and low- and high-grade PJI, respectively. The number of intraoperative samples and the incidence of positive cultures were recorded for each patient. Additionally, venous blood samples and periarticular tissue samples were collected from each patient to determine miRNA expressions between the groups. MiRNA screening was performed by small RNA-sequencing using the miRNA next generation sequencing (NGS) discovery (miND) pipeline.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 34 - 34
1 Apr 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold elevation in miR-128 expression. The gain of miR-128 signaling in intact joints through intra-articular injection of miR-128 precursor resulted in 1.8–2.1-fold elevations in serum cartilage breakdown products CTX-II and COMP concentrations. miR-128 overexpression caused the joints to show evident chondrocyte apoptosis as evidenced by TUNEL staining concomitant with severe cartilage damage. Of note, antisense oligonucleotide knockdown of miR-128 (miR-128-AS) enabled the affected knee joints to show minor responses to the ACLT escalation of autophagy dysfunction in chondrocytes, cartilage breakdown histopathology, and OARSI scores. Administration with miR-128-AS also attenuated the ACLT-induced synovial membrane thickening, hyper-angiogenesis, and hypercellularity, which subsequently alleviated osteophyte accumulation, subchondral plate destruction, and trabecular microstructure loss. Conclusion. miR-128 signaling impairs chondrocyte autophagy, which ramps up chondrocyte apoptosis and OA knee development. This study highlights an emerging miR-128 knockdown strategy that sustains cartilage microarchitecture integrity and thereby delays OA knee pathogenesis


Aims

Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation.

Methods

Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 80 - 80
1 Apr 2018
Ripmeester EGJ Caron MMJ van Rhijn LW Welting TJM
Full Access

Introduction. During osteoarthritis (OA) progression the articular chondrocyte undergoes a phenotypic switch in which the chondrocyte acquires a catabolic and hypertrophy-like state. Bone morphogenetic protein (BMP)-7 is known for its anti-catabolic and pro-anabolic properties in cartilage repair and in OA chondrocytes. In its anabolic state the chondrocyte”s metabolism and protein synthesis are up-regulated. In order to meet a higher demand of protein synthesis, it is expected that the translational capacity of the chondrocyte is increased after exposure to BMP-7. The cellular availability of maturated ribosomal RNAs (rRNA) is rate-limiting in the assembly of ribosomes and previously it has been shown that BMP-7 treatment resulted in increased expression levels of bagpipe homeobox homolog 1 (BAPX-1/NKX3.2). We therefore hypothesize that BMP-7 enhances the translational capacity of articular chondrocytes via BAPX-1/NKX3.2-dependent synthesis of rRNAs. Methods. OA human articular chondrocytes (HACs) were isolated from OA cartilage from total knee arthroplasty. SW1353 cells and OA HACs were exposed to BMP-7 (1 nM) and expression levels of rRNAs (18S, 5.8S, 28S) rRNA processing snoRNAs (RMRP and U3), a crucial co-factor in rRNA transcription (UBF-1) and BAPX-1/NKX3.2 were determined by RT-qPCR (and immunoblotting for BAPX-1/NKX3.2). BAPX-1/NKX3.2 overexpression and knockdown were achieved via transfection of FLAG-BAPX-1/NKX3.2 or a BAPX-1/NKX3.2 siRNA. For ex vivo confirmation, human OA cartilage explants from total knee arthroplasty were exposed to BMP-7 (1 nM) and gene expression levels of rRNAs were measured via qPCR. Results. BMP-7 treatment resulted in increased 18S and 5.8S rRNA levels, increased UBF-1, RMRP and U3 expression. This correlated with increased BAPX-1/NKX3.2 mRNA and protein expression. Overexpression of BAPX-1/NKX3.2 resulted in increased rRNA expression levels and the reciprocal knockdown of BAPX-1/NKX3.2 resulted in decreased rRNA expression levels. Besides these in vitro data, exposure of OA cartilage explants to BMP-7 confirmed our in vitro data (increase of 18S, 5.8S, UBF-1, RMRP, U3 and BAPX-1 expression levels). Discussion/Conclusion. Here we show that BMP-7 induces increased cellular levels of maturated rRNAs, with concomitant induction of factors involved in the transcription and maturation of rRNAs. This process is directly influenced by BAPX-1/NKX3.2 in similar ways as BMP-7. In future research the transcriptional activity of the 47S pre-rRNA gene will be determined via a luciferase promoter reporter approach and increased translation will be directly determined via puromycilation assays. Our data provide important novel insights into the mechanism behind the anabolic properties of BMP-7 and may even provide a new molecular cue to target the chondrocyte phenotype in OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 81 - 81
1 Apr 2017
Cheng Y Wang F Su Y Ko J
Full Access

Background. MicroRNAs are non-coding small RNAs that reportedly regulate mRNA targets or protein translation of various tissues in physiological and pathological contexts. This study was undertaken to characterise the contributions of microRNA-29a (miR-29a) to the progression of estrogen deficiency-mediated excessive osteoclast resorption and bone loss. Methods. Osteoblast-specific transgenic mice overexpressing miR-29a driven by osteocalcin promoter (C57BL/6JNarl-TgOCN-mir29a) or wild-type mice were subjected to bilateral ovariectomy. Bone mineral density, trabecular microarchitecture and osteoclast distribution was quantified by μCT and histomorphometry. Primary CD11b+CSF-1R+ preosteoclasts were isolated for detecting ex vivo osteoclast differentiation. Gene expression and transcription factor-promoter interaction were quantified by RT-PCR and chromatin immunoprecipitation. Results. Estrogen depletion deteriorated bone integrity in concomitant with decrement of miR-29a expression. Transgenic mice had increased bone mass and skeletal microstructure and mitigated responses to the deleterious effects of estrogen deficiency on bone mineral density, B.Ar/T.Ar, Tb.Th and Tb.No. miR-29a overexpression attenuated the estrogen loss-mediated histopathology of osteoclast number, surface and erosion surface. Ex vivo, miR-29a transgenic mice had decreased osteoclast differentiation, osteoclastogenic marker expression (osteoclastogenic transcription factor NFATc1, TRAP, MMP-9, cathepsin K, and V-ATPase), F-actin ring and pit formation of primary preosteoclast cells. miR-29a alleviated the estrogen deficiency-induced promotion of interleukin-17 (IL-17) expression and enrichment of suppressor of cytokine signaling 2 (SOCS2) and signal transducer and activator of transcription 4 (STAT4) on IL-17 proximal promoter regions. Conclusions. Estrogen deficiency-mediated interruption of miR-29a expression exacerbates bone tissue resorption. miR-29a signalling via suppression of proinflammatory cytokine IL-17 action counteracts osteoclast differentiation and resorption reactions, thereby attenuates the deleterious effect of estrogen loss on bone integrity. This study highlights the skeletal-protective actions of miR-29a against excessive bone remodelling. Sustained miR-29a in bone tissue is beneficial for ameliorating osteoporosis. Level of evidence. II


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims

Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.

Methods

We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 654 - 656
16 Oct 2023
Makaram NS Simpson AHRW

Cite this article: Bone Joint Res 2023;12(10):654–656.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims

Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA.

Methods

We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 341 - 341
1 Jul 2014
Ito H Fujii T Kasahara T Ishikawa M Furu M Shibuya H Matsuda S
Full Access

Summary Statement. In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes. Introduction. The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes. Materials & Methods. Articular cartilage defects of 2 mm of diameter were created by drilling the cartilage with a wire to just the subchondral bone in 5-week-old SD rats. The width and depth of the created defects were confirmed by HE staining in histology. The healing tissues were harvested at days 2, 6, and 14 after the operation, and total RNAs were entracted. PCR array was conducted according to the manufacturer's instruction. Quantitative PCR (qPCR) was performed using cDNA of the healing tissues. Bone marrow cells were harvested from 5-week-old SD rat, and a standard migration assay was performed using chemokines. Results. CCL2, CCL3, CCL7 and CCL12 were upregulated in the healing tissues of cartilage defects shown by PCR array. The expression pattterns were confirmed by an expression analysis by qPCR. Both CCL2 and CCL3 induced the migration of bone marrow cells in the in vitro migration assay. Discussion/Conclusion. This study showed for the first time that CCL chemokines are upregulated in the articular cartilage defects and induce the migration of bone marrow cells. These results lead to an innovative measures along with an appropriate delivery method in induction the migration of bone marrow cells from the underlying bone marrow to stimulate articular cartilage healing processes


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 200 - 209
1 Apr 2022
Liu YD Liu JF Liu B

Aims

The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development.

Methods

Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 844 - 845
8 Dec 2021
Chen H Chen L


Aims

Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing.

Methods

A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 342 - 342
1 Jul 2014
Sun Y Roberts A Haines N Ruffolo M Mauerhan D Hanley E
Full Access

Summary. PCA-III, a phosphocitrate analog, acts not only as a potent calcification inhibitor but also as a protective agent for extracellular matrices. PCA-III has potential as a disease-modifying drug in the treatment of primary osteoarthritis and posttraumatic osteoarthritis in humans. Introduction. Phosphocitrate (PC) inhibits the development of primary osteoarthritis (OA) in Hartley guineas pigs but not menisectomy-induced OA in rabbits (1). We sought to examine the molecular mechanisms underlying the disease-modifying activity of PC, and evaluate the effect of PCA-III, a PC analog (PCA), on the development of primary and secondary OA. Patients & Methods. Meniscal explant and microarray. OA menisci were obtained from OA patients undergoing joint replacement surgery. OA meniscal explants were cultured in medium containing PC (three wells) and medium without PC (three wells). Total RNA was extracted from the explant, and subjected to microarray analysis. RT-PCR. OA fibroblast-like synoviocytes were treated with basic calcium phosphate (BCP) crystals in the absence or presence of PCA-III. RNAs were extracted, and subjected to semi-quantitative RT-PCR to examine the expression of MMP1 and IL-1b. Micromass culture. A droplet of OA chondrocyte suspension was placed in each well of a 24-well plate. After placing all droplets, the wells were fed with chondrogenesis medium with PCA-III (five wells) and without PCA-III (five wells). The production of proteoglycans was examined by alcian blue staining. Animal treatment. The first group of Hartley guinea pigs (n=5) received injections of PCA-III and the second group received injections of saline as control. Two months later, partial-menisectomy surgery was performed on the right knee of all guinea pigs. After the surgery, injections of PCA-III and saline were resumed. All animal were euthanatised four months later, and both knees were examined. Results. PC inhibited the expression of many genes classified into the molecular function group of MMP activity. Of the 23 genes classified into MMP activity, the expression of 16 genes, including CPM, ADAM28, MMP7, MMP10, MMP1, MMP3, ADAMTS5, ADAMTS1, and ADAMTS9, was inhibited. In contrast, the expression of many genes classified into the molecular function group of extracellular matrix structural constituents, was induced by PC, including COL2A1, COL11A1, COL1A1 and ACAN. PC also inhibited the expression of numerous genes classified into the biological process of inflammatory response (data not shown). PCA-III, similar to PC, inhibited BCP crystals-induced expression of MMP1 and IL-1b). In addition, PC-III strongly stimulated the production of proteoglycans by OA chondrocytes while inhibiting calcium deposition (not shown). Microscopic examination of the Indian ink stained medial tibia plateau of the left knees (non-surgery knee) of the guinea pigs indicated that PCA-III inhibited the development of primary OA in the Hartley guinea pigs. Microscopic examination also indicated that PCA-III inhibited the development of partial-menisectomy-induced OA or posttraumatic OA in the post-operative knees. Discussion/Conclusion. PC is thought to act as a potential structural disease-modifying drug for crystal-associated OA by inhibiting crystal deposition within the OA joints. However, PC and its analogs are not only potent calcification inhibitors, but also protective agents for extracellular matrices. Our findings indicate that PCA-III has potential as a disease-modifying drug for both human crystal-associated OA and posttraumatic OA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 43 - 43
1 Jul 2014
Li R Patel H Perriman D Wang J Smith P
Full Access

Summary Statement. Using the latest Next Generation Sequencing technologies, we have investigated miRNA expression profiles in human trabecular bone from total hip replacement (THR) revision surgery where wear particle associated osteolysis was evident. Introduction. A major problem in orthopaedic surgery is aseptic loosening of prosthetic implants caused by wear particle associated osteolysis. Wear debris is known to impact on a variety of cellular responses and genes in multiple pathways associated with the development of the periprosthetic osteolysis. MicroRNAs (miRNAs) act as negative regulators of gene expression and the importance of miRNAs in joint pathologies has only recently been addressed. However, miRNA profiles in osteolytic bone are largely unknown. Using the latest Next Generation Sequencing technologies, we have investigated miRNA expression profiles in human trabecular bone sourced from bone discarded during total hip replacement (THR) revision surgery where wear particle associated osteolysis was evident. Patients and Methods. Three groups of gender and age-matched patients (n=9 per group) were recruited for this study including patients undergoing revision surgery, primary THR patients and healthy subjects. Total RNAs were prepared from trabecular bone specimens. The cDNA libraries were constructed using a TruSeq Small RNA Sample Preparation kit, and then sequenced on an Illumina HiSeq2000 sequencer. All good quality tags were aligned against the reference sequences containing human chromosomal sequences and 18s and 28s rRNA sequences were analysed using Bowtie software. We used miRBase v19 to identify the start positions of all mature miRNA and the edgeR package to analyse differential expression. Osteogenesis pathway-related gene expression was also investigated using RT-qPCR Array assay. Results. We observed a significant difference in expressed miRNAs between revision and primary THR groups, including upexpressed miR127, miR-409, miR-211 and miR-146a. Importantly, the miR-127 (3.1 fold, p=0.005) and miR-146a (3.5 fold, p=0.001) were not only upexpressed in the revision group vs primary group, but also upexpressed in the revision group vs the healthy group. Thus, miR-127 and miR-146a may have potential as both biomarkers to predict osteolysis and as therapeutic targets. The miR-127 and miR-146a are critical in bone diseases because some of their target genes play an important role in osteogenesis. We have thus studied osteogenic genes and confirmed that SMAD4, RUNX2, FGFR1, TGFβ1, COL1A1 and WNT4 were downregulated. Our data also revealed that miR-93 and miR-204a were downexpressed (−3.7 fold, p=0.023; −2.5, p=0.003 respectively) and t IL-6 and IL-6R, which had been reported as miR-204 target genes, were upexpressed. Discussion and Conclusion. Our results showed that upexpressed miR-127, miR-146a, miR-204a and miR-93 in trabecular bone from revision THR may be the key negative regulators in either osteogenic genes involved in osteogenic differentiation of bone formation or inflammatory genes involved in osteoclastogenesis. Aberrant miRNA expressions identified in the revision THR group may also suggest the existence of genetic risk factors favouring the development of osteolysis in certain specific subgroups of patients. An in-depth understanding of the roles of these regulatory miRNAs in the skeleton warrants further investigation


Bone & Joint Research
Vol. 10, Issue 7 | Pages 459 - 466
28 Jul 2021
Yang J Zhou Y Liang X Jing B Zhao Z

Aims

Osteoarthritis (OA) is characterized by persistent destruction of articular cartilage. It has been found that microRNAs (miRNAs) are closely related to the occurrence and development of OA. The purpose of the present study was to investigate the mechanism of miR-486 in the development and progression of OA.

Methods

The expression levels of miR-486 in cartilage were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN), matrix metalloproteinase (MMP)-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) in SW1353 cells at both messenger RNA (mRNA) and protein levels was determined by qRT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Double luciferase reporter gene assay, qRT-PCR, and western blot assay were used to determine whether silencing information regulator 6 (SIRT6) was involved in miR-486 induction of chondrocyte-like cells to a more catabolic phenotype.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 4 - 4
1 Sep 2012
Chen C Uludag H Wang Z Jiang H
Full Access

Purpose. The data regarding the effects of noggin on bone morphogenetic protein (BMP)-induced osteogenesis of mesenchymal stem cells (MSCs) are controversial. Most studies performed in rodent cells/models indicated that noggin was a negative regulator of BMP-2-induced osteogenesis; however, one study conducted with human MSCs in culture showed that the addition of noggin induced osteogenesis in vitro. To clear the controversy, we designed this study to evaluate the effects of knocking down noggin gene expression on BMP-2-induced osteogenesis of human bone marrow-derived primary MSCs in vitro. Method. MSCs were isolated from human tibial bone marrow by density gradient centrifugation. Two noggin small interfering RNAs (siRNAs) were used in this study to knockdown noggin gene expression. There were four study groups: MSCs with no transfection of siRNA (named as NT group), MSCs transfected with non-targeting negative control siRNA (named as control group), MSCs transfected with noggin siRNA1 (named as NOGsi1 group), and MSCs transfected with noggin siRNA2 (named as NOGsi2 group). After transfection, MSCs were induced to undergo osteogenic differentiation by incubating in basal medium containing 0.1 μg/ml BMP-2 for 35 days. The expression levels of osteoblastic marker genes were measured by real-time quantitative PCR on day 14. Also assessed was alkaline phosphatase (ALP) activity by a colorimetric kinetic assay and Fast Blue B staining on day 14. Calcium deposition was determined by the calcium assay on day 35. Results. The expression levels of integrin binding sialoprotein (IBSP) and osteocalcin (OC) were significantly decreased in both NOGsi1 and NOGsi2 groups compared with NT and control groups (all p<0.038). Although the expression level of runt-related transcription factor 2 (RUNX2) was also reduced in NOGsi1 and NOGsi2 groups compared with NT and control groups, it did not reach statistical significance. ALP activity was significantly lower in NOGsi1 and NOGsi2 groups than that of NT group (both p<0.024). The same pattern was also observed in ALP Fast Blue B staining. Calcium deposition was also significantly decreased in both NOGsi1 and NOGsi2 groups compared with NT group (both p<=0.048). Conclusion. Noggin suppression by siRNA inhibits BMP-2-induced osteogenesis of human bone marrow-derived MSCs. Our results, contrary to the extensive studies conducted in rodent cells/models, corroborated with the previous study that the addition of noggin in the cell culture increased osteogenesis of human MSCs. This suggests that the effects of noggin on BMP-2-induced osteogenesis of MSCs might be species-specific


Bone & Joint Research
Vol. 10, Issue 9 | Pages 558 - 570
1 Sep 2021
Li C Peng Z Zhou Y Su Y Bu P Meng X Li B Xu Y

Aims

Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH.

Methods

High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology.