Advertisement for orthosearch.org.uk
Results 1 - 50 of 242
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 170 - 177
4 Jan 2021
Craxford S Marson BA Oderuth E Nightingale J Agrawal Y Ollivere B

Aims. Infection after surgery increases treatment costs and is associated with increased mortality. Hip fracture patients have historically had high rates of methicillin-resistant Staphylococcus aureus (MRSA) colonization and surgical site infection (SSI). This paper reports the impact of routine MRSA screening and the “cleanyourhands” campaign on rates of MRSA SSI and patient outcome. Methods. A total of 13,503 patients who presented with a hip fracture over 17 years formed the study population. Multivariable logistic regression was performed to determine risk factors for MRSA and SSI. Autoregressive integrated moving average (ARIMA) modelling adjusted for temporal trends in rates of MRSA. Kaplan-Meier estimators were generated to assess for changes in mortality. Results. In all, 6,189 patients were identified before the introduction of screening and 7,314 in the post-screening cohort. MRSA infection fell from 69 cases to 15 in the post-screening cohort (p < 0.001). The ARIMA confirmed a significant reduction in MRSA SSI post-screening (p = 0.043) but no significant impact after hand hygiene alone (p = 0.121). Overall SSI fell (2.4% to 1.5%), however deep infection increased slightly (0.89% to 1.06%). ARIMA showed neither intervention affected overall SSI (“cleanyourhands” -0.172% (95% confidence interval (CI) -0.39% to 0.21); p = 0.122, screening -0.113% per year, (95% CI -0.34 to 0.12); p = 0.373). One-year mortality after deep SSI was unchanged after screening (50% vs 45%; p = 0.415). Only warfarinization (OR 3.616 (95% CI 1.366 to 9.569); p = 0.010) and screening (OR 0.189 (95% CI 0.086 to 0.414); p < 0.001) were significant covariables for developing MRSA SSI. Conclusion. While screening and decolonization may reduce MRSA-associated SSI, the benefit to patient outcome remains unclear. Overall deep SSI remains an unsolved problem that has seen little improvement over time. Preventing other hospital-associated infections should not be forgotten in the fight against MRSA. Cite this article: Bone Joint J 2021;103-B(1):170–177


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 807 - 811
1 Jun 2006
Roche SJ Fitzgerald D O’Rourke A McCabe JP

This prospective five-year study analyses the impact of methicillin-resistant Staphylococcus aureus (MRSA) on an Irish orthopaedic unit. We identified 318 cases of MRSA, representing 0.76% of all admissions (41 971). A total of 240 (76%) cases were colonised with MRSA, while 120 (37.7%) were infected. Patients were admitted from home (218; 68.6%), nursing homes (72; 22.6%) and other hospitals (28; 8.8%). A total of 115 cases (36.6%) were colonised or infected on admission. Many patients were both colonised and infected at some stage. The length of hospital stay was almost trebled because of the presence of MRSA infection. Encouragingly, overall infection rates have not risen significantly over the five years of the study despite increased prevalence of MRSA. However, the financial burden of MRSA is increasing, highlighting the need for progress in understanding how to control this resistant pathogen more effectively


Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin. Methods. Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test. Results. The vancomycin group had significantly larger inhibition zones than the fosfomycin group from day three through to completion of the fourth week of incubation (p < 0.001). The vancomycin group exhibited a MRSA inhibition zone up to four weeks but the fosfomycin group showed an inhibition zone for only three days and after that did not show the the potential to inhibit MRSA. Conclusion. This in vitro study found that the inhibitory effect of vancomycin-impregnated articulating cement spacers against MRSA outperformed fosfomycin-impregnated articulating cement spacers. Further comparing our results to other published reports suggests there might be a limitation of the disc diffusion bioassay to show a large inhibitory zone in a high concentration of a highly soluble antibiotic. Cite this article: V. Yuenyongviwat, N. Ingviya, P. Pathaburee, B. Tangtrakulwanich. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Joint Res 2017;6:132–136. DOI: 10.1302/2046-3758.63.2000639


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 812 - 817
1 Jun 2006
Nixon M Jackson B Varghese P Jenkins D Taylor G

We examined the rates of infection and colonisation by methicillin-resistant Staphylococcus aureus (MRSA) between January 2003 and May 2004 in order to assess the impact of the introduction of an MRSA policy in October 2003, which required all admissions to be screened. Emergency admissions were treated prophylactically and elective beds ring-fenced. A total of 5594 admissions were cross-referenced with 22 810 microbiology results. The morbidity, mortality and cost of managing MRSA-carrying patients, with a proximal fracture of the femur were compared, in relation to age, gender, American Society of Anaesthesiologists grade and residential status, with a group of matched controls who were MRSA-negative. In 2004, we screened 1795 of 1796 elective admissions and MRSA was found in 23 (1.3%). We also screened 1122 of 1447 trauma admissions and 43 (3.8%) were carrying MRSA. All ten ward transfers were screened and four (40%) were carriers (all p < 0.001). The incidence of MRSA in trauma patients increased by 2.6% per week of inpatient stay (r = 0.97, p < 0.001). MRSA developed in 2.9% of trauma and 0.2% of elective patients during that admission (p < 0.001). The implementation of the MRSA policy reduced the incidence of MRSA infection by 56% in trauma patients (1.57% in 2003 (17 of 1084) to 0.69% in 2004 (10 of 1447), p = 0.035). Infection with MRSA in elective patients was reduced by 70% (0.56% in 2003 (7 of 1257) to 0.17% in 2004 (3 of 1806), p = 0.06). The cost of preventing one MRSA infection was £3200. Although colonisation by MRSA did not affect the mortality rate, infection by MRSA more than doubled it. Patients with proximal fractures of the femur infected with MRSA remained in hospital for 50 extra days, had 19 more days of vancomycin treatment and 26 more days of vacuum-assisted closure therapy than the matched controls. These additional costs equated to £13 972 per patient. From this experience we have been able to describe the epidemiology of MRSA, assess the impact of infection-control measures on MRSA infection rates and determine the morbidity, mortality and economic cost of MRSA carriage on trauma and elective orthopaedic wards


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 292 - 298
1 Mar 2008
Walls RJ Roche SJ O’Rourke A McCabe JP

We have analysed the management and clinical outcome of a series of consecutive patients who had a total hip replacement and developed post-operative surgical site infection (SSI) with methicillin-resistant Staphylococcus aureus. The incidence of this infection was 1% over a period of five years. We studied SSI in 15 patients (16 infections) with a mean age of 72.7 years (53 to 81). In all, 12 of the infections occurred early and half of the infections involved the prosthesis, resulting in an increase of 11-fold in the cumulative hospital stay. Methicillin-resistant Staph. aureus was successfully eradicated in all the patients after a mean follow-up of 53.6 months (25 to 88). Superficial incisional infections resolved after antibiotic therapy alone while deep infections required multiple operative debridements. Attempted retention of the implant in early organ space infections was successful in only one of five patients. Only three patients with implant-level infections obtained a pain-free, functional prosthesis while a further three required excision arthroplasty. We have formulated a protocol of treatment which may serve as a guide in the management of these infections


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone. Methods. Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation. Results. MRSA infiltrated bone-resident cells within 15 to 30 minutes. Penetration was most effectively prevented with early (i.e. 30 minutes) antibiotic administration. The combined administration of rifampicin with other antibiotics potentiated their protective effects against MRSA-induced cytotoxicity and most significantly reduced extracellular bacterial bioburden. Gentamicin-containing compounds were most effective in reducing intracellular MRSA bioburden. Of the surgical preparation agents evaluated, betadine reduced in vitro MRSA growth to the greatest extent. Conclusion. The standard of care for open fractures involves debridement and antibiotics within the first six hours of injury but does not account for the window in which bacteria penetrate cells. Antibiotics must be administered as early as possible after injury or prior to incision to prevent intracellular infestation. Rifampicin can potentiate the capacity of antibiotic regimens to reduce MRSA-induced cytotoxicity. Cite this article:Bone Joint Res. 2020;9(2):49–59


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1401 - 1406
1 Nov 2008
Patel A Calfee RP Plante M Fischer SA Arcand N Born C

Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation. Methods. Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 10. 6. or 43.0 (SD 8.4) x 10. 5. colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 10. 6.   or 72.0 (SD 4.2) x 10. 5.   CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting. Results. Biofilms that formed on HA discs were thicker and larger than those on Ti discs, whereas those on Ag-HA discs were thinner and smaller than those on Ti discs. Viable bacterial counts in vivo revealed that Ag-HA combined with VCM was the most effective treatment. Conclusion. Ag-HA with VCM has a potential synergistic effect in reducing MRSA biofilm formation and can thus be useful for preventing and treating PJI. Cite this article:Bone Joint Res. 2020;9(5):211–218


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 642 - 645
1 May 2007
Kaminski A Kammler J Wick M Muhr G Kutscha-Lissberg F

Between October 2001 and February 2002, 324 healthcare workers were screened for methicillin-resistant Staphylococcus aureus (MRSA) by nose and throat swabs. A positive finding led to activation of a standardised control programme for the affected person who was immediately excluded from work. Family members of those who were MRSA-positive were offered screening free of charge. An eradication programme was carried out in the permanent carriers. MRSA was found in 17 (5.3%) healthcare workers, 11 of whom proved to be permanent carriers, and six temporarily colonised. Three children of a positive healthcare worker showed nasopharyngeal MRSA, the acquisition of which occurred within the hospital. The standardised eradication programme for carriers was successful in most cases but failed in two individuals, whereupon systemic antibiotics were used successfully. The decolonised carriers, observed for more than one year, remained MRSA negative. Isolation precautions in hospitals do not always prevent hospital staff and their families from acquiring MRSA. The identification of affected employees is difficult because in most cases only asymptomatic colonisation occurs. Screening and eradication can be complicated and costly, and for the affected employees the occupational consequences can be far-reaching as they have no guaranteed legal protection


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 249 - 252
1 Feb 2009
Fascia DTM Singanayagam A Keating JF

We have conducted a case-control study over a period of ten years comparing both deep infection with methicillin-resistant staphylococcus aureus (MRSA) and colonised cases with a control group.

Risk factors associated with deep infection were vascular diseases, chronic obstructive pulmonary disease, admission to a high-dependency or an intensive-care unit and open wounds. Those for colonisation were institutional care, vascular diseases and dementia. Older age was a risk factor for any MRSA infection. The length of hospital stay was dramatically increased by deep infection.

These risk factors are useful in identifying higher-risk patients who may be more susceptible to MRSA infection. A strategy of early identification and isolation may help to control its spread in trauma units.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 749 - 754
1 Jun 2005
Giannoudis PV Parker J Wilcox MH


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1536 - 1536
1 Nov 2008
NEOGI DS YADAV CS RASTOGI S


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1537 - 1537
1 Nov 2008
ROGERS BA LITTLE NJ


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 541 - 542
1 Apr 2006
Wilson J Tate D

National guidelines state that in patients undergoing operations the site of the procedure should be marked. In clinical practice the same marker is used repeatedly. We are not aware of any investigation regarding the theoretical risk of transferring organisms such as methicillin-resistant Staphyloccocus aureus (MRSA) between patients by a skin marker.

In an experimental setting, Penflex and Viomedex skin markers were tested 30 times each after contaminating them with a standard inoculum of MRSA. The survival of the organism on the tip of the markers was assessed by culture on MRSA-indicator nutrient agar plates at 0, 5, 15 and 60 minutes, 24 and 48 hours and at 1, 2, and 3 weeks after contamination.

There was a significant difference between the markers, with the Penflex showing no survival of MRSA after 15 minutes whereas the Viomedex product continued to produce MRSA cultures for up to three weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 141 - 142
1 Jan 2007
SUNDERAMOORTHY D


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 137 - 138
1 Jan 2006
MACDONALD DJ GRAY AJR


Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology. Results. The Vm-MBs and Mp-MBs met the experimental requirements. The biofilm biomass in the Vm, Vm-MBs, UTMD, and Vm-MBs + UTMD groups was significantly lower than in the control group. MRSA and E. coli biofilms were most notably damaged in the Vm-MBs + UTMD group and Mp-MBs + UTMD group, respectively, with mean 21.55% (SD 0.08) and 19.73% (SD 1.25) remaining in the biofilm biomass. Vm-MBs + UTMD significantly reduced biofilm thickness and bacterial viability (p = 0.005 and p < 0.0001, respectively). Mp-MBs + UTMD could significantly decrease biofilm thickness and bacterial viability (allp < 0.001). Plate-counting method showed that the numbers of MRSA and E. coli bacterial colonies were significantly lower in the Vm-MBs + UTMD group and the Mp, Mp-MBs, UTMD, Mp-MBs + UTMD groups compared to the control group (p = 0.031). SEM showed that the morphology and structure of MRSA and E. coli were significantly damaged in the Vm-MBs + UTMD and Mp-MBs + UTMD groups. Conclusion. Vm-MBs or Mp-MBs combined with UTMD can effectively disrupt biofilms and protectively release antibiotics under ultrasound mediation, significantly reducing bacterial viability and improving the bactericidal effect of antibiotics. Cite this article: Bone Joint Res 2024;13(9):441–451


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 821 - 824
1 Jun 2012
Fushimi K Miyamoto K Fukuta S Hosoe H Masuda T Shimizu K

There have been few reports regarding the efficacy of posterior instrumentation alone as surgical treatment for patients with pyogenic spondylitis, thus avoiding the morbidity of anterior surgery. We report the clinical outcomes of six patients with pyogenic spondylitis treated effectively with a single-stage posterior fusion without anterior debridement at a mean follow-up of 2.8 years (2 to 5). Haematological data, including white cell count and level of C-reactive protein, returned to normal in all patients at a mean of 8.2 weeks (7 to 9) after the posterior fusion. Rigid bony fusion between the infected vertebrae was observed in five patients at a mean of 6.3 months (4.5 to 8) post-operatively, with the remaining patient having partial union. Severe back pain was immediately reduced following surgery and the activities of daily living showed a marked improvement. Methicillin-resistant Staphylococcus aureus was detected as the causative organism in four patients. Single-stage posterior fusion may be effective in patients with pyogenic spondylitis who have relatively minor bony destruction


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Open
Vol. 2, Issue 11 | Pages 958 - 965
16 Nov 2021
Craxford S Marson BA Nightingale J Ikram A Agrawal Y Deakin D Ollivere B

Aims. Deep surgical site infection (SSI) remains an unsolved problem after hip fracture. Debridement, antibiotic, and implant retention (DAIR) has become a mainstream treatment in elective periprosthetic joint infection; however, evidence for DAIR after infected hip hemiarthroplaty is limited. Methods. Patients who underwent a hemiarthroplasty between March 2007 and August 2018 were reviewed. Multivariable binary logistic regression was performed to identify and adjust for risk factors for SSI, and to identify factors predicting a successful DAIR at one year. Results. A total of 3,966 patients were identified. The overall rate of SSI was 1.7% (51 patients (1.3%) with deep SSI, and 18 (0.45%) with superficial SSI). In all, 50 patients underwent revision surgery for infection (43 with DAIR, and seven with excision arthroplasty). After adjustment for other variables, only concurrent urinary tract infection (odds ratio (OR) 2.78, 95% confidence interval (CI) 1.57 to 4.92; p < 0.001) and increasing delay to theatre for treatment of the fracture (OR 1.31 per day, 95% CI 1.12 to 1.52; p < 0.001) were predictors of developing a SSI, while a cemented arthroplasty was protective (OR 0.54, 95% CI 0.31 to 0.96; p = 0.031). In all, nine patients (20.9%) were alive at one year with a functioning hemiarthroplasty following DAIR, 20 (46.5%) required multiple surgical debridements after an initial DAIR, and 18 were converted to an excision arthroplasty due to persistent infection, with six were alive at one year. The culture of any gram-negative organism reduced success rates to 12.5% (no cases were successful with methicillin-resistant Staphylococcus aureus or Pseudomonas infection). Favourable organisms included Citrobacter and Proteus (100% cure rate). The all-cause mortality at one year after deep SSI was 55.87% versus 24.9% without deep infection. Conclusion. Deep infection remains a devastating complication regardless of the treatment strategy employed. Success rates of DAIR are poor compared to total hip arthroplasty, and should be reserved for favourable organisms in patients able to tolerate multiple surgical procedures. Cite this article: Bone Jt Open 2021;2(11):958–965


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 170 - 170
1 Jun 2012
Whiteside L Peppers M Nayfeh T Roy M
Full Access

Introduction. Resistant organisms are difficult to eradicate in infected total knee arthroplasty, and treatment of methicillin-resistant Staphylococcus aureus (MRSA) is especially challenging. Whereas most surgeons use antibiotic-impregnated cement during revision to treat infection, the delivery of the drug in adequate doses is limited in penetration and duration. This study presents the 2- to 8-year prospective results of one-stage revision and intraarticular antibiotic infusion protocol used to treat MRSA. Methods. Eighteen knees (18 patients) with methicillin-resistant Staphylococcus aureus were treated between January 2001 and January 2007 with one-stage revision protocol that included débridement, uncemented revision of total knee components, and intraarticular infusion of 500 mg vancomycin via Hickman catheter once or twice daily for 6 weeks. (Figure 1) No intravenous antibiotics were used after the first 24 hours. Serum vancomycin levels were monitored to maintain levels between 3 and 10 μg/mL. The mean serum vancomycin peak concentration was 6 ± 2 μg/mL and the mean serum vancomycin trough concentration was 3 ± 1 μg/mL at 2 weeks postoperative. Results. Knee synovial fluid peak and trough vancomycin levels were measured in two knees. Synovial fluid peak concentrations were 10,233 μg/mL and 20,167 μg/mL and trough concentrations were 724 μg/mL and 543μg/mL, respectively. Minimum followup was 27 months (range, 27-75 months). Mean followup was 62 months, (range, 27–96 months). At 2-year followup, mean Knee Society score was 83 ± 9. No radiographic evidence of implant migration has occurred. One knee became reinfected with methicillin-resistant Staphylococcus aureus and was reoperated at 5 months. A necrotic bone segment was found, the knee was debrided and revised, and the antibiotic infusion protocol was readministered. The knee remained free of infection at 42 months postoperatively. Conclusions. One-stage revision with uncemented components and 6 weeks intraarticular vancomycin administration safely and effectively treated MRSA-infected TKA with no apparent complications


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups. Methods. A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm. 3. cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate. Results. For MSSA and MRSA, no inhibitory effect was found in the control group, and antibiotic-loaded smooth titanium alloy beads showed a short inhibitory effect until day 2. For MSSA, both tantalum and 3D porous titanium beads showed significantly larger mean ZOIs than cement beads (all p < 0.01) each day until day 7 for tantalum and until day 3 for 3D porous titanium. After six days, antibiotic-loaded cement had significantly larger mean ZOIs than the 3D porous titanium (p = 0.027), but no significant difference was found with tantalum (p = 0.082). For MRSA, both tantalum and 3D porous titanium beads had significantly larger mean ZOIs than antibiotic-loaded cement each day until day 6 for tantalum (all p < 0.01) and until day 3 for 3D porous titanium (all p < 0.04). Antibiotic-loaded cement had significantly larger mean ZOIs than tantalum and 3D porous titanium from day 7 to 9 (all p < 0.042). Conclusion. These results show that porous metal implants can deliver local antibiotics over slightly varying time frames based on in vitro analysis. Cite this article: Bone Joint J 2020;102-B(6 Supple A):158–162


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 11 - 19
1 Jul 2020
Shohat N Goswami K Tan TL Yayac M Soriano A Sousa R Wouthuyzen-Bakker M Parvizi J

Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. Methods. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation. Results. Of the 1,174 patients that were included in the study, 405 patients (34.5%) failed treatment. Using random forest analysis, an algorithm that provides the probability for failure for each specific patient was created. By order of importance, the ten most important variables associated with failure of I&D were serum CRP levels, positive blood cultures, indication for index arthroplasty other than osteoarthritis, not exchanging the modular components, use of immunosuppressive medication, late acute (haematogenous) infections, methicillin-resistant Staphylococcus aureus infection, overlying skin infection, polymicrobial infection, and older age. The algorithm had good discriminatory capability (area under the curve = 0.74). Cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model. Conclusion. This is the first study in the orthopaedic literature to use machine learning as a tool for predicting outcomes following I&D surgery. The developed algorithm provides the medical profession with a tool that can be employed in clinical decision-making and improve patient care. Future studies should aid in further validating this tool on additional cohorts. Cite this article: Bone Joint J 2020;102-B(7 Supple B):11–19


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 13 - 17
1 Jun 2021
Park KJ Chapleau J Sullivan TC Clyburn TA Incavo SJ

Aims. Infection complicating primary total knee arthroplasty (TKA) is a common reason for revision surgery, hospital readmission, patient morbidity, and mortality. Increasing incidence of methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern. The use of vancomycin as prophylactic agent alone or in combination with cephalosporin has not demonstrated lower periprosthetic joint infection (PJI) rates, partly due to timing and dosing of intravenous (IV) vancomycin administration, which have proven important factors in effectiveness. This is a retrospective review of a consecutive series of primary TKAs examining incidence of PJI, adverse reactions, and complications using IV versus intraosseous (IO) vancomycin at 30-day, 90-day, and one-year follow-up. Methods. A retrospective review of 1,060 patients who underwent TKA between May 2016 to July 2020 was performed. There were 572 patients in the IV group and 488 in the IO group, with minimal 30 days of follow-up. Patients were followed up at regularly scheduled intervals (two, six, and 12 weeks). No differences between groups for age, sex, BMI, or baseline comorbidities existed. The IV group received an IV dose of 15 mg/kg vancomycin given over an hour preceding skin incision. The IO group received a 500 mg dose of vancomycin mixed in 150 ml of normal saline, injected into proximal tibia after tourniquet inflation, before skin incision. All patients received an additional dose of first generation cephalosporin. Evaluation included preoperative and postoperative serum creatinine values, tourniquet time, and adverse reactions attributable to vancomycin. Results. Incidence of PJI with minimum 90-day follow-up was 1.4% (eight knees) in the IV group and 0.22% (one knee) in IO group (p = 0.047). This preliminary report demonstrated an reduction in the incidence of infection in TKA using IO vancomycin combined with a first-generation cephalosporin. While the study suffers from limitations of a retrospective, multi-surgeon investigation, early findings are encouraging. Conclusion. IO delivery of vancomycin after tourniquet inflation is a safe and effective alternative to IV administration, eliminating the logistical challenges of timely dosing. Cite this article: Bone Joint J 2021;103-B(6 Supple A):13–17


Full Access

To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September 2020. DNA was extracted from the infected tissue samples using the bead-beating method. A multiplex LAMP assay was conducted to identify MSSA and MRSA infections. To recognize the Staphylococcus genus, S. aureus, and methicillin resistance, 3 sets of 6 primers for the 16S ribosomal ribonucleic acid (rRNA) and the femA and mecA genes were used, respectively. The limit of detection and sensitivity (detection rate) of the LAMP assay for diagnosing MSSA and MRSA infection were analyzed. The results of this study suggest that the LAMP assay performed with tissue DNA samples can be a useful diagnostic method for the rapid detection of musculoskeletal infections caused by MSSA and MRSA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 18 - 18
10 Feb 2023
Foster A Boot W Stenger V D'Este M Jaiprakash A Crawford R Schuetz M Eglin D Zeiter S Richards R Moriarty T
Full Access

Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in. sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with systemic antibiotic therapy. In vivo observations included: local antibiotic tissue concentration, renal and liver function tests, and quantitative microbiology on tissues and hardware post-mortem. There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits. This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 548 - 551
1 Apr 2011
Murphy E Spencer SJ Young D Jones B Blyth MJG

The objective of this study was to determine the effectiveness of screening and successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) colonisation in elective orthopaedic patients on the subsequent risk of developing a surgical site infection (SSI) with MRSA. We screened 5933 elective orthopaedic in-patients for MRSA at pre-operative assessment. Of these, 108 (1.8%) were colonised with MRSA and 90 subsequently underwent surgery. Despite effective eradication therapy, six of these (6.7%) had an SSI within one year of surgery. Among these infections, deep sepsis occurred in four cases (4.4%) and superficial infection in two (2.2%). The responsible organism in four of the six cases was MRSA. Further analysis showed that patients undergoing surgery for joint replacement of the lower limb were at significantly increased risk of an SSI if previously colonised with MRSA. We conclude that previously MRSA-colonised patients undergoing elective surgery are at an increased risk of an SSI compared with other elective patients, and that this risk is significant for those undergoing joint replacement of the lower limb. Furthermore, when an infection occurs, it is likely to be due to MRSA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 15 - 15
2 Jan 2024
Costa B Alves P Fonseca D Campos F Monteiro AC Pereira R Costa F Gomes P Martínez-de-Tejada G Monteiro C Martins M
Full Access

Orthopedic Device-Related Infections (ODRIs) are a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current treatments, based on antibiotic administration, have proven to be ineffective. Consequently, there is a need for antibiotic-free alternatives. Antimicrobial peptides (AMPs) are a promising solution due to their broad-spectrum of activity, high efficacy at very low concentrations, and low propensity to induce resistance. We aim to develop a new AMP-based chitosan nanogel to be injected during orthopedic device implantation to prevent ODRIs. Chitosan was functionalized with norbornenes (NorChit) through the reaction with carbic anhydride and then, a cysteine-modified AMP, Dhvar5, a peptide with potent antibacterial activity, even against methicillin-resistant Staphylococcus aureus (MRSA), was covalently conjugated to NorChit (NorChit- Dhvar5), through a thiol-norbornene photoclick chemistry (UV= 365 nm). For NorChit-Dhvar5 nanogels production, the NorChit-Dhvar5 solution (0.15% w/v) and Milli-Q water were injected separately into microfluidic system. The nanogels were characterized regarding size, concentration, and shape, using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA) and Dynamic light scattering (DLS). The nanogels antibacterial properties were assessed in Phosphate Buffer (PBS) for 6 h, against four relevant microorganisms (Pseudomonas aeruginosa, S. aureus and MRSA, and in Muller- Hinton Broth (MHB), 50% (v/v) in PBS, supplemented with human plasma (1% (v/v)), for 6 and 24 h against MRSA. The obtained NorChit-Dhvar5 nanogels, presented a round-shaped and ∼100 nm. NorChit- Dhvar5 nanogels in a concentration of 10. 10. nanogels/mL in PBS were capable of reducing the initial inoculum of P. aeruginosa by 99%, S. aureus by 99%, and MRSA by 90%. These results were corroborated by a 99% MRSA reduction, after 24 h in medium. Furthermore, NorChit-Dhvar5 nanogels do not demonstrate signs of cytotoxicity against MC3T3-E1 cells (a pre-osteoblast cell line) after 14 days, having high potential to prevent antibiotic-resistant infection in the context of ODRIs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 27 - 27
24 Nov 2023
Chen B Chittò M Benavente LP Post V Moreno MG Zeiter S Trampuz A Wagemans J Lavigne R Onsea J Metsemakers W Moriarty F
Full Access

Aim. Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA. Method. Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (10. 7. PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice. Results. In vitro: The cocktail of evolved phages (10. 7. PFU/ml, 1:1) combined with 0.5 MIC vancomycin achieved 99.72% reduction in MRSA3 biofilm in vitro compared to the growth control. This combination was stable in the co-delivery hydrogel over 8 days. The release profile showed that 57% of phages and 80% of vancomycin were released after 72hrs, which was identical to the performance for gels loaded with phage or antibiotic alone. In the in vivo study, the bacterial load from animals that received co-delivery hydrogel and systemic vancomycin was significantly reduced compared to controls, animals that received systemic vancomycin and animals that received co-delivery hydrogel alone (p<0.05). Conclusions. Our study demonstrates the potential of using evolved phages in combination with vancomycin and hydrogel delivery systems for the treatment of MRSA-related infections. Further research in this area may lead to the development of specific therapies for biofilm-related infection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 26 - 26
24 Nov 2023
Morovic P Benavente LP Karbysheva S Perka C Trampuz A
Full Access

Aim. Antibiotics have limited activity in the treatment of multidrug-resistant or chronic biofilm-associated infections, in particular when implants cannot be removed. Lytic bacteriophages can rapidly and selectively kill bacteria, and can be combined with antibiotics. However, clinical experience in patients with surgical infections is limited. We investigated the outcome and safety of local application of bacteriophages in addition to antimicrobial therapy. Method. 8 patients (2 female and 6 male) with complex orthopedic and cardiovascular infections were included, in whom standard treatment was not feasible or impossible. The treatment was performed in agreement with the Article 37 of the Declaration of Helsinki. Commercial or individually prepared bacteriophages were provided by ELIAVA Institute in Tbilisi, Georgia. Bacteriophages were applied during surgery and continued through drains placed during surgery three times per day for the following 5–14 days. Follow-up ranged from 1 to 28 months. Results. Median age was 57 years, range 33–75 years. Two patients were diagnosed with a persistent knee arthrodesis infection, one chronic periprosthetic joint infection (PJI), one cardiovascular implantable electronic device (CIED) infection and four patients with left ventricular assist device (LVAD) infection. The isolated pathogens were multi-drug-resistant Pseudomonas aeruginosa (n=3), methicillin-sensitive Staphylococcus aureus (n=4), methicillin-resistant Staphylococcus aureus (MRSA) (n=1) and methicillin-resistant Staphylococcus epidermidis (MRSE) (n=1). 4 infections were polymicrobial. 5 patients underwent surgical debridement with retention of the implant, 1 patient with PJI underwent the exchange of the prosthesis and one patient with LVAD infection was treated conservatively. All patients received intravenous and oral antibiotic therapy and local application of bacteriophages. At follow-up of 12 month, 5 patients were without signs or symptoms of infection, whereas in one patient with LVAD infection, a relapse was observed with emergence of phage-resistant Pseudomonas aeruginosa. In this patient, no surgical revision was performed. Conclusions. Bacteriophage therapy may represent a valid additional approach, when standard antimicrobial and surgical treatment is not possible or feasible, including in difficult-to-treat infections. In our case series, 5 of 6 patients were infection free after 1 year. Further studies need to address the optimal bacteriophage administration route, concentration, duration of treatment and combination with antimicrobials


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 63 - 63
24 Nov 2023
Prebianchi SB Santos INM Brasil I Charf P Cunha CC Seriacopi LS Durigon TS Rebouças MA Pereira DLC Dell Aquila AM Salles M
Full Access

Aim. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is commonly associated with serious cases of community-onset skin and musculoskeletal infections (Co-SMSI). Molecular epidemiology analysis of CA-MRSA recovered from skin and soft tissues specimens is lacking in Latin America. This study aimed to identify phenotypic and genotypic features of MRSA isolates recovered from patients presenting Co-SMSI. Methods. Consecutive MRSA isolates recovered from Co-SMSI of patients admitted from March 2022 to January 2023 in a Brazilian teaching hospital were tested for antimicrobial resistance and characterized by their genotypic features. Identification was carried out by automated method and through MALDI-TOF MS. Antimicrobial susceptibility was tested by disk diffusion, broth microdilution and E-test strips for determination of the minimal inhibitory concentration (MIC) according to recommendations from the Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST) and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Gene mecA characterization and Sccmec typing were performed by multiplex polymerase chain reaction (PCR) assay, and gene lukF detection by single PCR. Patients were prospectively followed up for two months, in order to determine their clinical characteristics and outcomes. Results. Overall, 48 Staphylococcus aureus isolates were obtained from 68 samples recovered from patients with Co-SMSI. Twenty two (42%) were phenotypically characterized as MRSA, although mecA gene was only identified in 20 of those samples. Sccmec was untypable in 12 isolates, Sccmec was type II in 4 isolates and 2 were classified as type IVa. LukF gene was identified in 5 isolates. Antimicrobial resistance profile showed that all isolates were susceptible to linezolid and vancomycin with MIC = 1 and MIC = 2 in 66,7% and 33.3%, respectively. Susceptibility to quinolones was worryingly low and none of the isolates were sensitive to usual doses of ciprofloxacin and levofloxacin, and showed increased rates of resistance to increased exposure to these drugs, as well. Isolates were both susceptible to gentamicin and tetracycline in 85% and resistance to also Sulfamethoxazole/Trimethoprim occurred in only 2 isolates. Mortality rate evaluated within 1 month of the initial evaluation was 10% among MRSA isolates. Conclusions. Our results showed that CA-MRSA isolates causing Co-SMSI demonstrated an alarming pattern of multidrug resistance, including to β-lactam and quinolones, which have been commonly prescribed as empirical therapy for patients with skin, soft tissue and musculoskeletal infections


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 270 - 275
1 Feb 2006
Orhan Z Cevher E Mülazimoglu L Gürcan D Alper M Araman A Özsoy Y

Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres. The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 52 - 52
1 Oct 2022
Müller N Trampuz A Gonzalez-Moreno M
Full Access

Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. Method. Different BAG-S53P4 formulations were used for this study, including (a) BAG-powder (<45 μm), (b) BAG-granules (500–800 μm), (c) a cone-shaped BAG-scaffold and (d) two kinds of BAG-putty containing granules, with no powder (putty-A) or with additional powder (putty-B), and a synthetic binder. Inert glass beads were included as control. All formulations were tested in a concentration of 1750 g/ml in Müller-Hinton-Broth. Targeted bacteria included methicillin-resistant Staphylococcus aureus (MRSA) and epidermidis (MRSE). Vancomycin was tested at the minimum-inhibitory-concentration for each strain (1 µg/ml for MRSA; 2 μg/ml for MRSE). To investigate the antibiofilm effect of BAG alone or combined with vancomycin, 3 hour-old MRSA or MRSE biofilms were formed on porous glass beads and exposed to BAG ± vancomycin for 24h, 72h and 168h. After co-incubation, biofilm-beads were deep-washed in phosphate-buffered saline and placed in glass vials containing fresh medium. Recovering biofilm bacteria were detected by measuring growth-related heat production at 37°C for 24h by isothermal microcalorimetry. Changes in pH and osmotic pressure over time were assessed after co-incubation of each BAG formulation in Müller-Hinton-Broth for 0h, 24h, 72h and 168h. Results. All BAG formulations showed antibiofilm activity against MRSA and MRSE in a time-dependent manner, where longer incubation times revealed higher antibiofilm activity. BAG-powder and BAG-putty-B were the most effective formulations suppressing biofilm, followed by BAG-granules, BAG-scaffold and finally BAG-putty-A. The addition of vancomycin had no substantial impact on biofilm suppression. An increase in pH and osmotic pressure over time could be observed for all BAG formulations. BAG-powder reached the highest pH value of 12.5, whereas BAG-putty-A resulted in the lowest pH of 9. Both BAG-putty formulations displayed the greatest increase on osmotic pressure. Conclusions. BAG-S53P4 has demonstrated efficient biofilm suppression against MRSA and MRSE, especially in powder-containing formulations. Our data indicates no additional antibiofilm improvement with addition of vancomycin. Moreover, high pH appears to have a larger antimicrobial impact than high osmolarity. Acknowledgements. This work was supported by PRO-IMPLANT Foundation (Berlin, Germany). The tested materials were provided by Bonalive Biomaterials Ltd (Turku, Finland)


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 4 - 9
1 Jan 2013
Goyal N Miller A Tripathi M Parvizi J

Staphylococcus aureus is one of the leading causes of surgical site infection (SSI). Over the past decade there has been an increase in methicillin-resistant S. aureus (MRSA). This is a subpopulation of the bacterium with unique resistance and virulence characteristics. Nasal colonisation with either S. aureus or MRSA has been demonstrated to be an important independent risk factor associated with the increasing incidence and severity of SSI after orthopaedic surgery. Furthermore, there is an economic burden related to SSI following orthopaedic surgery, with MRSA-associated SSI leading to longer hospital stays and increased hospital costs. Although there is some controversy about the effectiveness of screening and eradication programmes, the literature suggests that patients should be screened and MRSA-positive patients treated before surgical admission in order to reduce the risk of SSI.

Cite this article: Bone Joint J 2013;95-B:4–9.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 31 - 36
1 Jan 2016
Whiteside LA Roy ME Nayfeh TA

Bactericidal levels of antibiotics are difficult to achieve in infected total joint arthroplasty when intravenous antibiotics or antibiotic-loaded cement spacers are used, but intra-articular (IA) delivery of antibiotics has been effective in several studies. This paper describes a protocol for IA delivery of antibiotics in infected knee arthroplasty, and summarises the results of a pharmacokinetic study and two clinical follow-up studies of especially difficult groups: methicillin-resistant Staphylococcus aureus and failed two-stage revision. In the pharmacokinetic study, the mean synovial vancomycin peak level was 9242 (3956 to 32 150; . sd . 7608 μg/mL) among the 11 patients studied. Serum trough level ranged from 4.2 to 25.2 μg/mL (mean, 12.3 μg/mL; average of 9.6% of the joint trough value), which exceeded minimal inhibitory concentration. The success rate exceeded 95% in the two clinical groups. IA delivery of antibiotics is shown to be safe and effective, and is now the first option for treatment of infected total joint arthroplasty in our institution. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):31–6


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 225 - 228
1 Feb 2009
Shukla S Nixon M Acharya M Korim MT Pandey R

We examined the incidence of infection with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to the Leicester Royal Infirmary Trauma Unit between January 2004 and June 2006. The influence of MRSA status at the time of their admission was examined, together with age, gender and diagnosis, using multi-variant analysis. Of 2473 patients, 79 (3.2%) were MRSA carriers at the time of admission and 2394 (96.8%) were MRSA-negative. Those carrying MRSA at the time of admission were more likely to develop surgical site infection with MRSA (7 of 79 patients, 8.8%) than non-MRSA carriers (54 of 2394 patients, 2.2%, p < 0.001). Further analysis showed that hip fracture and increasing age were also risk factors with a linear increase in relative risk of 1.8% per year. MRSA carriage at admission, age and the pathology are all associated with an increased rate of developing MRSA wound infection. Identification of such risk factors at admission helps to target health-care resources, such the use of glycopeptide antibiotics at induction and the ‘building-in’ of increased vigilance for wound infection pre-operatively


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 401 - 405
1 Mar 2010
Tan K Lim C Lim AY

The treatment of infected exposed implants which have been used for internal fixation usually involves debridement and removal of the implant. This can result in an unstable fracture or spinal column. Muscle flaps may be used to salvage these implants since they provide soft-tissue cover and fresh vascularity. However, there have been few reports concerning their use and these have concentrated on the eradication of the infection and successful soft-tissue cover as the endpoint. There is no information on the factors which may influence the successful salvage of the implant using muscle flaps. We studied the results and factors affecting outcome in nine pedicled muscle flaps used in the treatment of exposed metal internal fixation with salvage of the implant as the primary endpoint. This was achieved in four cases. Factors predicting success were age < 30 years, the absence of comorbid conditions and a favourable microbiological profile. The growth of multiple organisms, a history of smoking and the presence of methicillin-resistant Staphylococcus aureus on wound cultures indicated a poor outcome. The use of antibiotic beads, vacuum-assisted closure and dressing, the surgical site, the type of flap performed and the time from primary surgery to flap cover were not predictive of outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 91 - 91
1 Dec 2019
Scheper H Verhagen J de Visser A van der Wal R Wubbolts J Visser LG Boer MGJD Nibbering PH
Full Access

Aims. Prosthetic joint infection (PJI) remains the most severe complication of arthroplasty. Failure of intensive, long-term antibiotic treatment for PJI often requires removal of the implant. Antibiotic failure is thought to be caused by biofilm and persister formation. Novel anti-biofilm and anti-persister strategies are urgently needed. Here, we investigated the effects of several antimicrobial peptides on the bacteria within antibiotic-treated biofilms in an in vitro mature biofilm model on abiotic surfaces. Methods. On polystyrene, a mature (7 day-old) methicillin-resistant Staphylococcus aureus (MRSA) biofilm was developed. Thereafter, bacteria in the biofilm were exposed to rifampicin and ciprofloxacin (both 10× >MIC) for three days. Surviving bacteria in the antibiotic-treated biofilm, presumed to include persisters, were exposed to increasing doses of the antimicrobial peptides SAAP-148, acyldepsipeptide 4 (ADEP4), LL-37 and pexiganan. SAAP-148 was further tested on antibiotic-treated mature biofilms on titanium/aluminium/niobium (TAN) discs and prosthetic joint liners. Results. Daily exposure of the mature biofilm for seven days with antibiotics resulted in a 4-log reduction of MRSA without elimination of the bacteria. The surviving bacteria within the biofilm were eliminated upon subsequent exposure to SAAP-148 and pexiganan but not with LL-37 ad ADEP4. Antibiotic treatment of mature biofilms on TAN discs followed by SAAP-148 also resulted in eradication of bacteria within the biofilm. SAAP-148 also fully eliminated bacteria within antibiotic-treated mature MRSA biofilms on an ex vivo liner of a prosthetic joint. Conclusions. A novel mature biofilm model has been developed in which the efficacy of antimicrobial peptides against bacteria, including persisters, residing within a biofilm was investigated. SAAP-148 and pexiganan were highly effective against the bacteria residing in antibiotic-exposed mature MRSA biofilms. This in vitro model system will be used to analyze the effects of novel antibiotic strategies and other anti-PJI agents


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 88 - 88
1 Dec 2019
Luca MD Materazzi A Klatt A Bottai D Tavanti A Trampuz A
Full Access

Aim. To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to methicillin-resistant Staphylococcus aureus (MRSA) in Galleria mellonella larvae implanted with a K-wire. Method. The stability of Sb-1 in G. mellonella larvae was investigated by injecting a phage titer of 10. 8. PFU and evaluating the presence of Sb-1 in hemolymph at different time points. For infection experiments, sterile stainless-steel K-wires (4 mm, 0.6 mm Ø) were implanted into larvae. Two days after implant, larvae were infected with MRSA ATCC 43300 (1×10. 5. CFU) and incubated at 37°C for further 2 days. Implanted-infected larvae were thus treated for 2 days (3×/day) with 10µL of: i) PBS; ii) Sb-1 (10. 7. PFU); iii) Daptomycin (4mg/kg), iv) PBS (24h)/Daptomycin(24h); v) Sb-1(24h)/Daptomycin(24h). To evaluate the prophylactic efficacy of Sb-1, an experiment based on phages or vancomycin (10mg/kg) administration, followed by MRSA infection of implanted larvae was performed. Both two days post-infection and post-treatment, K-wires were explanted, and the material was sonicated and plated for MRSA colony counting. Results. Sb-1 titer resulted stable in hemolymph of G. mellonella larvae for 6–8 h post-administration. Two days post-infection of K-wire implanted larvae, ≈5×10. 7. CFU/ml MRSA were found on the material. K-wires from larvae treated with Sb-1 or Daptomycin showed a MRSA CFU/ml reduction of ≈1 log compared to the CFU/ml values of the untreated control. The staggered administration Sb-1/Daptomycin determined higher CFU reduction (≈ 3.5 log). Prophylaxis with Sb-1 prevented MRSA infection of 7out of 10 larvae similarly to vancomycin. Conclusions. G. mellonella larvae implanted with K-wires are a suitable model to test antibiofilm formulations in vivo. Sb-1 phage is able to prevent implant-associated infection due to MRSA in larvae. Sequential combination of Sb-1 and Daptomycin strongly reduces the MRSA load on implanted K-wires


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 54 - 54
1 Apr 2018
Francis K
Full Access

Each year more than 70 billion standard units of antibiotic are prescribed to treat bacterial infections worldwide. In addition, at least 63,000 tons of antibiotics are consumed by livestock for growth promotion and disease prevention. The result of this overuse of antibiotics is a spiraling increase in resistance. In the United States and Europe, antibiotic resistant bacteria are responsible for more than 4 million infections and approximately 50,000 deaths annually. In addition, bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) have increased in prevalence in hospitals over the last three decades. Such bacteria are particularly problematic in postoperative infections, exacerbating treatment through the development of biofilms, especially on medical implants which are virtually impossible to treat without removal and replacement of the device. This presentation will show how non-invasive preclinical imaging (optical, PET and CT) is being used to better understand the establishment and development of bacterial infections in vivo, and how best to treat them. In particular, data will be shown as to how preclinical imaging can be used to monitor bacterial infections on orthopaedic implants, and how this technology might be translated into the clinic


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 45 - 45
1 Dec 2018
Bue M Hanberg P Koch J Jensen LK Lundorff M Aalbæk B Jensen HE Søballe K Tøttrup M
Full Access

Aim. The increasing incidence of orthopaedic methicillin-resistant Staphylococcus aureus (MRSA) infections represents a significant therapeutic challenge. Being effective against MRSA, the role of vancomycin may become more important in the orthopaedic setting in the years to come. Nonetheless, vancomycin bone and soft tissue penetration during infection remains unclear. We assessed the effect of a traumatically induced, implant-associated acute osteomyelitis on vancomycin bone penetration in a porcine model. Method. In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Staphylococcus aureus strain. Following administration of 1,000 mg of vancomycin on day 5, vancomycin concentrations were obtained with microdialysis for eight hours in the implant bone cavity, in cancellous bone adjacent to the implant cavity, in subcutaneous adipose tissue (SCT) adjacent to the implant cavity, and in healthy cancellous bone and healthy SCT in the contralateral leg. Venous blood samples were also obtained. The extent of infection and inflammation was evaluated by post-mortem computed tomography scans, C-reactive protein serum levels and cultures of blood and swabs. Results. In relation to all the implant cavities, bone destruction was found. Ranging from 0.20 to 0.74, tissue penetration, expressed as the ratio of tissue to plasma area under the concentration-time curve from 0 to the last measured value, was incomplete for all compartments except for healthy SCT. The lowest penetration was found in the implant cavity. Conclusions. Staphylococcus aureus implant-associated osteomyelitis was found to reduce vancomycin bone penetration, especially in the implant cavity. These findings suggest that it may be unsafe to rely solely on vancomycin therapy when treating acute osteomyelitis. Particularly when metaphyseal cavities are present, surgical debridement seems necessary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 75 - 75
1 Dec 2019
Boot W Foster A Schmid T D'este M Zeiter S Eglin D Richards G Moriarty F
Full Access

Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large animal model of a two-stage revision to treat MRSA implant-associated osteomyelitis has been developed to assess novel treatments. A bioresorbable, thermo-responsive hyaluronan hydrogel (THH) loaded with antibiotics has been developed and our aim was to investigate it´s in vivo efficacy as a local antibiotic carrier compared to the current standard of care i.e. antibiotic-loaded polymethylmethacrylate (PMMA) bone cement. Method. 12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical systemic therapy to group 1. Sheep were euthanized 2 weeks following completion of antibiotic therapy. At euthanasia, soft tissue, bone, and sonicate fluid from the hardware was collected for quantitative bacteriology. Results. Sheep tolerated the surgeries and both local and systemic antibiotics well. Gold standard of care successfully treated 3/6 sheep with a total of 10/30 culture-positive samples. All 6 sheep receiving antibiotic-loaded THH were successfully treated with 0/30 culture-positive samples, p=0.0008 gold-standard vs. hydrogel (Fisher's Exact). Conclusions. The clinical gold standard treatment was successful in 50% of sheep, consistent with outcomes reported in the literature treating MRSA infection. The antibiotic-loaded THH clearly outperformed the gold standard in this model. Superior efficacy of the THH is likely due to 1) the ability to administer local antibiotics at the both revision surgies due to the bioresorbable nature of the hydrogel, and 2) complete antibiotic release compared to bone cement, which is known to retain antibiotics. Our results highlight the potential of local delivered, biodegradable systems for antibiotics for eradicating implant-related infection caused by antibiotic-resistant pathogens. Acknowledgement. Funding provided by AO Trauma


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 48 - 48
1 Dec 2019
Afonso R Baptista MX Costa MRD Sá-Barros C Santos BD Varanda P Tinoco JB Rodrigues EB
Full Access

Aim. This study aims to describe our department experience with single stage revision (SSR) for chronic prosthetic-joint infection (PJI) after total hip arthroplasty (THA) between 2005 and 2014 and to analyze success rates and morbidity results of patients submitted to SSR for infected THA according to pathogen. Method. We retrospectively reviewed our 10 years of results (2005–2014) of patients submitted to SSR of the hip combined with IV and oral antibiotic therapy for treatment of chronic PJI (at least 4 weeks of symptoms), with a minimum follow-up of four years (n=26). Patients were characterized for demographic data, comorbidities, identified germ and antibiotic therapy applied (empiric and/or targeted). Outcomes analyzed were re-intervention rate (infection-related or aseptic), success rate (clinical and laboratory assessment), length of stay, morbidity and mortality outcomes. Results. In this period, 26 single-stage revisions for chronic PJI of the hip were performed. Patients average age was 72 years (range 44–82). Ten patients were women. The average time of follow up was 69 months (range 4 to 12 years). The most commonly isolated bacteria were coagulase-negative Staphylococci (30%), methicillin-resistant Staphylococcus aureus (MRSA) (18%) and methicillin-sensitive Staphylococcus aureus (15%). It wasn't possible to identify the germ in 19% of the patients and other 23% were polymicrobial. Targeted antibiotic therapy was administered to 73% of patients and the most used targeted antibiotics were Vancomycin (53%), Linezolid (32%) and Rifampicin (21%). Mean length of stay was 25 days. In the follow-up period, 9 patients (35%) required a re-intervention for infection relapse. Two patients (8%) needed surgery because of persistent instability. During the follow-up period, the infection-free survival was 65% (33% for MRSA; 82% for coagulase-negative Staphylococci) and the surgery-free survival was 62%. Six patients (23%) died during the follow-up, all due to other medical conditions not related to hip infection. Conclusions. Our experience suggests that SSR is associated with good outcomes and low re-intervention rate, except in the case of infection due to MRSA. In this last group, the results were significantly poorer, what leads to suggest that a two-stage revision may be a better option. The potential advantages of a SSR include good rates of infection eradication, a decrease in surgical morbidity and mortality as well as a decrease in healthcare and global economic costs. As such, a one-stage aggressive surgical attitude in addition to targeted antibiotherapy seems to be a suitable solution in selected patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 57 - 57
1 Dec 2019
Bezstarosti H van Lieshout E Voskamp L Croughs P Kortram K McNally M Metsemakers W Verhofstad M
Full Access

Aim. The aim of this systematic review was to determine all cultured bacteria, antibiotic strategies, and their outcome from literature describing treatment of FRI patients between 1990 and 2018. Methods. A systematic literature search was performed on treatment and outcome of FRI. All studies in English that described surgical patient series for treatment of FRI were included, using Medline, Embase, Web of Science, Cochrane, and Google Scholar. Publications before 1990 and studies that did not describe FRI patient treatment or did not report original data (e.g., reviews or meta-analyses) were excluded. Study selection and data collection were done by two authors independently. Main collected parameters were preoperative cultures, use of local antibiotics, postoperative antibiotic protocol, cultured microorganisms, and overall outcome of treatment, i.e., eradication of infection and bony union, recurrence, amputations, revisional surgery, and number of complications. Dichotomous data were pooled using Medcalc, and weighted means were calculated for continuous data using Excel. Results. 2,171 studies were identified. Of these, 110 studies were included, describing 119 patient series, in which 4561 patients (4614 fractures) were treated. The population was predominantly male (76%), and the main location of FRI was the tibia (69%). In 78 (71%) studies, 3,234 microorganisms were cultured, of which Methicillin-sensitive Staphylococcus aureus (MSSA) was found in 1,094 (34%) patients, followed by Coagulase-negative Staphylococci (CNS), 431 (13%), Methicillin-resistant Staphylococcus aureus (MRSA), 283 (9%), and Pseudomonas aeruginosa 276 (9%). Polymicrobial infections were present in 11% of patients. Local antibiotics were used in 63 (53%) patient series, with PMMA being the most frequent carrier (73%). Calcium-based cements were used in nine series (14%). Clear postoperative antibiotic protocols were described in only 39 (35%) studies and differed widely. Bony union and infection eradication were achieved in 92% (CI 90–94) of all patients. Recurrence was seen in 9% (CI 8–11), and amputation was required in 3% (CI 3–4) of patients. The effect of local antibiotics on overall outcome of FRI treatment was unclear. Conclusions. This systematic literature review clearly shows that standardized antibiotic treatment protocols for FRI patients are lacking and that internationally accepted guidelines are required. The data also confirm that S. aureus is the most common microorganism encountered in FRI. Due to the large heterogeneity of used local antibiotics and carriers, a reliable comparison was not feasible. Indications for the use of local antibiotics are unclear, and future prospective studies seem necessary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2019
Butini ME Abbandonato G Rienzo CD Trampuz A Luca MD
Full Access

Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a methicillin-resistant Staphylococcus aureus (MRSA) biofilm after treatment with high concentrations of vancomycin (VAN) and their ability to revert to a normal-growing phenotype during incubation in fresh medium without antibiotic. Moreover, the ability of daptomycin to eradicate the infection by killing persisters was also investigated. Method. A 24h-old MRSA ATCC 43300 biofilm was exposed to 1024 µg/ml VAN for 24h. Metabolism-related heat of biofilm-embedded cells, either during or after VAN-treatment, was monitored in real-time by IMC for 24 or 48h, respectively. To evaluate the presence of VAN-derived “persisters” after antibiotic treatment, beads were sonicated and detached free-floating bacteria were further challenged with 100xMIC VAN (100 µg/ml) in PBS+1% Cation Adjusted Mueller Hinton Broth (CAMHB).. Suspensions were plated for colony counting. The resumption of persister cells' normal growth was analysed by IMC on dislodged trated cells for 15h in CAMHB. Activity of 16 µg/ml daptomycin was assessed against persister cells by colony counting. Results. When incubated with 1024 µg/ml VAN, MRSA biofilm produced undetectable heat, suggesting a strong reduction of cell viability and/or cellular metabolism. However, the same samples re-inoculated in fresh medium produced a detectable and delayed metabolism-related heat signal, similarly to that generated by persister cells. The following exposure to 100xMIC VAN resulted in neither complete killing nor bacterial growth, strongly supporting the hypothesis of a persistent phenotype. IMC analysis indicated that VAN-treated biofilm cells resumed normal growth with a ∼3h-delay, as compared to the untreated growth control. Daptomycin treatment yielded a complete eradication of persister cells selected after VAN treatment. Conclusions. Hostile environmental conditions (e.g. high antibiotic bactericidal concentrations) select for persister cells in MRSA biofilm after 24h-treatment in vitro. A staggered treatment vancomycin/daptomycin allows complete biofilm eradication. These results support the use in clinical practice of a therapeutic regimen based on the combined use of antibiotics to kill persisters and eradicate MRSA biofilms. IMC represents a suitable technique to detect persisters and characterize in real-time their reversion to a metabolically-active phenotype


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 48 - 48
1 Dec 2018
Cunha M Murça MA Nigro S Klautau G Salles M
Full Access

Aim. We aimed to compare the in vitro antibacterial activity of Bioactive Glass (BAG) S53P4, which is a compound showing local antibacterial activity, to that of antibiotic-loaded polymethylmethacrylate (PMMA) against multidrug resistant bacteria from osteomyelitis (OM) and prosthetic joint infection (PJI) isolates. Method. We studied convenience samples of multidrug resistant (MDR) microorganisms obtained from patients presenting OM and prosthetic joint infection (PJI). Mixtures containing tryptic soy broth (TSB) and inert glass beads (2mm), BAG-S53P4 granules (0.5–0.8mm and <45 mm) and Gentamicin or Vancomycin-loaded PMMA beads were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MR-CoNS), Pseudomonas aeruginosa or Klebsiella pneumoniae isolates. Glass beads (2.0mm) were used as a control. Antibacterial activity was evaluated by means of time-kill curve, through seeding the strains on blood agar plates, and subsequently performing colony counts after 24, 48, 72, 96, 120 and 168 hours of incubation. Differences between groups were evaluated by means of two-way analysis of variance (ANOVA) and Bonferroni's t test. Results. Inhibition of bacterial growth started soon after 48 hours of incubation, reached zero CFU/ml between 120 and 168 hours of incubation for both antibiotic-loaded PMMA and BAG S53P4 groups, in comparison with inert glass (p< 0.05). No difference regarding time-kill curves between antibiotic-loaded PMMA and BAG S53P4 was observed. Moreover, despite no difference was observed between both Vancomycin - or Gentamicin-loaded PMMA and BAG groups, there was statistical difference between the effectiveness of all treatments (BAG included) against gram-positive cocci and gram-negative bacilli, the latter of which requiring longer time frames for the cultures to yield no bacterial growth. Conclusions. BAG S53P4 presented antibacterial properties as much as antibiotic-loaded PMMA for MDR bacteria producing OM and PJI, although presenting differences between its effectiveness against different bacterial groups


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 146 - 146
1 May 2016
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B
Full Access

Background. Vancomycin and fosfomycin are antibiotic commonly used in Methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the efficacy of articulating cement spacer implegnated with vancomycin and articulating cement spacer implegnated with fosfomycin to inhibit MRSA. Methods. Vancomycin implegnated articulating cement spacers and Fosfomycin implegnated articulating cement spacers were immersed in sterile phosphate buffered saline(PBS) and then incubated at 37 C. The samples were collected and change daily. Aliquots were tested for MRSA inhibition by disc diffusion method. The inhibition zones diameters were measured. Results. Vancomycin group showed an MRSA inhibition zone up to four weeks. However, Fosfomycin group showed inhibition zone in day 3 in some samples but after that no sample had the potential to inhibit MRSA. Conclusion. In this experiment. Vancomycin impregnated articulating cement spacers showed longer efficacy to inhibit MRSA when compared to Fosfomycin


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 120 - 120
1 May 2019
Whiteside L
Full Access

Infected total hip arthroplasty (THA) is catastrophic, but it is treatable with a high degree of success. Two-stage revision with an antibiotic-loaded cement spacer is the most widely accepted method of treatment, and considered by some to be the best method; however, single-stage treatment currently is used widely, and is gaining acceptance. Although antibiotic-loaded cement is considered to be important for antibiotic delivery after surgery, cementless revision is equally successful with one- or two-stage procedures. Delivery of antibiotics with depot methods, such as cement or bone graft impregnated with antibiotics, is considered to be effective, but the antibiotic levels rapidly deteriorate after the first three days, leaving the cement itself vulnerable to colonization by resistant organisms. Nephrotoxicity is not common, but it does occur, and necessitates removal of the cement. This can be catastrophic if the implants are fixed with antibiotic-impregnated cement. Success rates of THA revision for infection can be as high as 98%, but this rate is dependent on the organism. Failure rates of 20% are the norm for resistant organisms such as methicillin-resistant Staphylococcus aureus, The cost of this failure rate is huge. Failure probably is due to the low concentration of antibiotics in the operative site. Antibiotic infusion into the operative site achieves concentrations that are hundreds of times higher than can be achieved with any other technique and has the additional advantage of being able to be discontinued in the case of renal or auditory damage. Limited personal experience suggests that the failure rate of revision total hip with resistant organisms is significantly lower with intra-articular delivery than with other currently available methods. Between January 2002 and July 2013, 9 patients (9 hips) presented with late-onset acute infections in cementless THA with bone-ingrown implants. These patients were all more than 2 years from their original surgery and had acute symptoms of infection for 4 to 9 days. Two were the author's patients and 7 were referred from another institution. None had symptoms until the onset of their infection, and none had postoperative wound complications, fever, or prolonged pain suggestive of a chronic process. All were treated with debridement and head/liner exchange, followed by catheter infusion of intraarticular antibiotics. All remained free of signs of infection at a mean follow-up of 74 months (range, 62–121 months). This sequential series of successful treatment of late-onset infection of osteointegrated total hip replacement suggests that this is a highly effective method. It has the advantages of being a single-stage procedure, and of avoiding the catastrophic surgical procedure of removing fully osteointegrated total hip replacements