header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 60 - 60
1 Sep 2012
Rampersad S Petit A Ruiz JC Wertheimer MR Antoniou J Mwale F
Full Access

Purpose

A major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients express high levels of type X collagen. Type X collagen is a marker of late stage chondrocyte hypertrophy, linked with endochondral ossification, which precedes bone formation. However, it has been shown that a novel plasma-polymer, called nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The aim of this study was to determine if the decreased expression of type X collagen, induced by the PPE:N surfaces is maintained when MSCs are removed from the surface and transferred to pellet cultures in the presence of serum and growth factor free chondrogenic media.

Method

Human MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA. Cells were expanded for 2–3 passages and then cultured on polystyrene dishes and on two different PPE:N surfaces: high (H) and low (L) pressure deposition. Cells were transferred for 7 additional days in chondrogenic serum free media (DMEM high glucose supplemented with 2 mM L-glutamine, 20 mM HEPES, 45 mM NaHCO3, 100 U/ml penicillin, 100 ug/ml streptomycin, 1 mg/ml bovine serum albumin, 5 ug/ml insulin, 50 ug/ml ascorbic acid, 5 ng/ml sodium selenite, 5 ug/ml transferrin) in pellet culture or on PS cell culture dishes. RNA was extracted using a standard TRIzol protocol. RT-PCR was realized using Superscript II (RT) and Taq polymerase (PCR) with primers specific for type I and X collagen. GAPDH was used as a housekeeping gene and served to normalize the results.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 563 - 564
1 Nov 2011
Rampersad S Petit A Yao G St-Georges-Robillard A Ruiz J Wertheimer MR Antoniou J Mwale F
Full Access

Purpose: Several studies have been directed toward using mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients for cartilage or disc repair because these patients are the ones that will require a source of autologous stem cells if biological repair of tissue lesions is to be a therapeutic option. A major drawback of current cartilage and intervertebral disc tissue engineering repair is that these cells rapidly express type X collagen, a marker of late stage chondrocyte hyperthrophy implicated in endochondral ossification. However, a novel plasma-polymerized thin film material, named nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The specific aim of this study was to determine if the suppression of type X collagen by PPE:N is maintained when MSCs are transferred to pellet cultures in chondrogenic defined media.

Method: MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA using a protocol approved by the Research Ethics Committee of our institution. Cells were then expanded for 2–3 passages in DMEM high glucose supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin, and finally cultured on polystyrene (PS) cell culture dishes or PPE: N surfaces for 3 and 7 days. Cells were transferred for 3 additional days in a chondrogenic serum free media (DMEM high glucose supplemented with 2 mM L-glutamine, 20 mM HEPES, 45 mM NaHCO3, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mg/ml bovine serum albumin, 5 μg/ml insulin, 50 μg/ml ascorbic acid, 5 ng/ ml sodium selenite, 5 μg/ml transferrin) in pellet culture or on PS cell culture dishes. Cells were then lysed and proteins were separated on 4–20% acrylamide gels and transferred to nitrocellulose membranes. Type X collagen was detected by Western blot; GAPDH expression was used as an internal control for protein loading.

Results: Results showed that type X collagen protein was expressed in MSCs from OA patients cultured on polystyrene but was suppressed when cultured on PPE: N. Since defined chondrogenic medium are commonly used in pellet culture to promote in vitro chondrogenesis, we then investigated the effect of transferring cells pre-cultured on PPE:N into pellet culture on type X collagen expression. However, the decreased type X collagen expression was not maintained in these conditions and that the expression returned to control values. The decreased type X collagen expression was maintained when the cells were cultured on PS cell culture dishes.

Conclusion: The use of MSCs is promising for tissue engineering of cartilage and intervertebral disc. The present study confirmed the potential of PPE:N surfaces in suppressing type X collagen expression in MSCs from OA patients. However, when MSCs stem cells are transferred to pellet cultures, type X collagen is rapidly re-expressed suggesting that pellet cultures may not be suitable for chondrogenesis of MSCs from OA patients.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 244 - 244
1 Jul 2011
Mwale F Wang HT Girard-Lauriault P Wertheimer MR Antoniou J Petit A
Full Access

Purpose: Recent evidence indicates that a major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritic patients rapidly express type X collagen (COL10A1), a marker of late-stage chondrocyte hypertrophy associated with endochondral ossification. We recently discovered that a novel atmospheric-pressure plasma-polymerized thin film substrate, named “nitrogen-rich plasma-polymerized ethylene” (PPE:N), is able to inhibit COL10A1 expression in committed MSCs. However, the cellular mechanisms implicated in the inhibition of COL10A1 expression by PPE:N surfaces are unknown.

Method: Human mesenchymal stem cells (MSCs) were obtained from aspirates from the intramedullary canal of donors (60–80 years of age) undergoing total hip replacement for osteoarthritis. Bone marrow aspirates were processed and MSCs were cultured on commercial polystyrene (PS control) and on PPE:N surfaces in the presence of different kinases and cyclooxygenase inhibitors for 3 days. Total RNA was extracted with TRIzol reagent (Invitrogen, Burlington, ON) and the expression of COL10A1, cyclooxygenase-1 (COX-1), and 5-lipoxygenase (5-LOX) genes was measured by real-time quantitative RT-PCR.

Results: Results showed that a non-specific inhibitor of cyclooxygenases reduced the expression of COL10A1. In contrast, inhibitors of protein kinases stimulated the expression of COL10A1. Furthermore, potent and selective inhibitors of COX-1 and 5-LOX also reduced the expression of COL10A1. However, COX-2 and 12-LOX inhibitors had no significant effect on the expression of COL10A1. COX-1 gene expression was also decreased when MSCs were incubated on “S5” PPE:N surfaces. Interestingly, MSCs did not express 5-LOX.

Conclusion: PPE:N surfaces suppress COL10A1 expression through the inhibition of COX-1 which is directly implicated in the synthesis of prostaglandins. The decreased expression of COX-1 and COL10A1 in human MSCs cultured on PPE:N is therefore in agreement with the induction of the osteogenic capacity of rat bone marrow and bone formation by systemic or local injection of PGE2 in rats. However, PGE2 and other prostaglandins inhibited COL10A1 expression in chick growth plate chondrocytes. This suggests that the effect of prostaglandins on COL10A1 expression may be cell-specific or may be dependent on pre-existing patho-physiological conditions.