Abstract
Purpose: Recent evidence indicates that a major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritic patients rapidly express type X collagen (COL10A1), a marker of late-stage chondrocyte hypertrophy associated with endochondral ossification. We recently discovered that a novel atmospheric-pressure plasma-polymerized thin film substrate, named “nitrogen-rich plasma-polymerized ethylene” (PPE:N), is able to inhibit COL10A1 expression in committed MSCs. However, the cellular mechanisms implicated in the inhibition of COL10A1 expression by PPE:N surfaces are unknown.
Method: Human mesenchymal stem cells (MSCs) were obtained from aspirates from the intramedullary canal of donors (60–80 years of age) undergoing total hip replacement for osteoarthritis. Bone marrow aspirates were processed and MSCs were cultured on commercial polystyrene (PS control) and on PPE:N surfaces in the presence of different kinases and cyclooxygenase inhibitors for 3 days. Total RNA was extracted with TRIzol reagent (Invitrogen, Burlington, ON) and the expression of COL10A1, cyclooxygenase-1 (COX-1), and 5-lipoxygenase (5-LOX) genes was measured by real-time quantitative RT-PCR.
Results: Results showed that a non-specific inhibitor of cyclooxygenases reduced the expression of COL10A1. In contrast, inhibitors of protein kinases stimulated the expression of COL10A1. Furthermore, potent and selective inhibitors of COX-1 and 5-LOX also reduced the expression of COL10A1. However, COX-2 and 12-LOX inhibitors had no significant effect on the expression of COL10A1. COX-1 gene expression was also decreased when MSCs were incubated on “S5” PPE:N surfaces. Interestingly, MSCs did not express 5-LOX.
Conclusion: PPE:N surfaces suppress COL10A1 expression through the inhibition of COX-1 which is directly implicated in the synthesis of prostaglandins. The decreased expression of COX-1 and COL10A1 in human MSCs cultured on PPE:N is therefore in agreement with the induction of the osteogenic capacity of rat bone marrow and bone formation by systemic or local injection of PGE2 in rats. However, PGE2 and other prostaglandins inhibited COL10A1 expression in chick growth plate chondrocytes. This suggests that the effect of prostaglandins on COL10A1 expression may be cell-specific or may be dependent on pre-existing patho-physiological conditions.
Correspondence should be addressed to CEO Doug C. Thomson. Email: doug@canorth.org