header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 27 - 27
24 Nov 2023
Chen B Chittò M Benavente LP Post V Moreno MG Zeiter S Trampuz A Wagemans J Lavigne R Onsea J Metsemakers W Moriarty F
Full Access

Aim

Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA.

Method

Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (107 PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 65 - 65
1 Dec 2017
Post V Morgenstern M Harris L Mageiros L Hitchings MD Méric G Pascoe B Sheppard SK Richards G Moriarty F
Full Access

Aim

Staphylococcus epidermidis has emerged as an important opportunistic pathogen causing orthopedic device-related infections (ODRIs). In this prospective clinical and laboratory study, we have investigated the association of genome variation and phenotypic features of the infecting S. epidermidis isolate with the clinical outcome of the infected patient.

Method

One hundred and four invasive S. epidermidis isolates were prospectively collected from patients with ODRI. Upon patient entry into the study, surgical parameters such as type of implant; open or closed fracture were documented. Personal characteristics were also documented and included: gender; age; body mass index (BMI); smoker/non-smoker; overall medical condition (Charlson comorbidity index); and chronic immunosuppressive conditions. Any revision surgeries involving the site of interest and all isolated pathogens were recorded throughout the course of treatment and follow-up. The clinical outcome after treatment was measured with a mean follow-up period (FUP) of 26 months, and each patient was then considered to have been “cured” or “not cured”. The isolates were tested for their antibiotic susceptibility and ability to form biofilm. Whole genome sequencing was performed on all isolates and genomic variation was related to features associated with “cured” and “not cured”.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 84 - 84
1 Dec 2016
Wahl P Post V Richards G Moriarty F
Full Access

Aim

Determine the time concentration profile required to achieve vancomycin-mediated eradication of Staphylococcus aureus biofilm. This is critical for the identification of performance targets for local antibiotic delivery, yet has not been described.

Method

Mature S. aureus UAMS-1 biofilms were grown on titanium-aluminum-niobium discs in Mueller Hinton broth (MHB). After 7 days, the discs were incubated in MHB containing vancomycin at 100, 200, 500, 1′000 and 2′000 mg/L. Both static and shaking conditions were tested. Samples were retrieved at intervals for up to 28 days for quantification of residual biofilm by sonication and serial dilution plating. One additional disc was processed per time point for scanning electron microscopy.