Advertisement for orthosearch.org.uk
Results 1 - 20 of 4444
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 63 - 63
1 Sep 2012
Kaneko M Ohnishi I Bessho M Matsumoto T Ohashi S Tobita K Nakamura K
Full Access

Introduction. Spinal aBMD only explains 50–80% of vertebral strength, and the application of aBMD measurements in isolation cannot accurately identify individuals who are likely to eventually experience bone fracture, due to the low sensitivity of the test. For appropriate treatment intervention, a more sensitive test of bone strength is needed. Such a test should include not only bone mineral density, but also bone quality. Quantitative computed tomography-based finite element methods (QCT/FEM) may allow structural analyses taking these factors into consideration to accurately predict bone strength (PBS). To date, however, basic data have not been reported regarding the prediction of bone strength by QCT/FEM with reference to age in a normal population. The purpose of this study was thus to create a database on PBS in a normal population as a preliminary trial. With these data, parameters that affect PBS were also analyzed. Methods. Participants in this study comprised individuals who participated in a health checkup program with CT at our hospital in 2009. Participants included 217 men and 120 women (age range, 40–89 years). Exclusion criteria were provided. Scan data of the second lumber vertebra (L2) were isolated and taken from overall CT data for each participant obtained with simultaneous scans of a calibration phantom containing hydroxyapatite rods. A FE model was constructed from the isolated data using Mechanical Finder software. For each of the FE models, A uniaxial compressive load with a uniform distribution and uniform load increment was applied. For each participant, height and weight were measured, BMI was calculated. Simple linear regression analysis was used to estimate correlations between age and PBS as analyzed by QCT/FEM. Changes in PBS with age were also evaluated by grouping participants into 5-year age brackets. One-way analysis of variance was used to compare average PBS for participants in each age range. Mean PBS in the 40–44 year age range was taken as the young adult mean (YAM). The ratio of mean PBS in each age group to YAM was calculated as a percentage. A multivariate statistical technique was used to determine how PBS was affected by age, height, weight, and BMI. Result/Discussion. Mean PBS was lower in women than in men for all age ranges. PBS in men and women significantly decreased with age. Simple linear regression between age and PBS showed the annual rate of decline in PBS was 55 N/year in men and 164 N/year in women. Mean PBS in the 75–79 year age range was 77% of YAM in men and in women, that in the 70–79 year age range was 47% of YAM. PBS was strongly dependent on age, while physical status had less effect


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 58 - 58
1 Dec 2022
Ruzbarsky J Comfort S Pierpoint L Day H Philippon M
Full Access

As the field of hip arthroscopy continues to develop, functional measures and testing become increasingly important in patient selection, managing patient expectations prior to surgery, and physical readiness for return to athletic participation. The Hip Sport Test (HST) was developed to assess strength, coordination, agility, and range of motion prior to and following hip arthroscopy as a functional assessment. However, the relationship between HST and hip strength, range of motion, and hip-specific patient reported outcome (PRO) measures have not been investigated. The purpose of this study was to evaluate the correlation between the HST scores and measurements of hip strength and range of motion prior to undergoing hip arthroscopy. Between September 2009 and January 2017, patients aged 18-40 who underwent primary hip arthroscopy for the treatment of femoroacetabular impingement with available pre-operative HST, dynamometry, range of motion, and functional scores (mHHS, WOMAC, HOS-SSS) were identified. Patients were excluded if they were 40 years old, had a Tegner activity score < 7, or did not have HST and dynamometry evaluations within one week of each other. Muscle strength scores were compared between affected and unaffected side to establish a percent difference with a positive score indicating a weaker affected limb and a negative score indicating a stronger affected limb. Correlations were made between HST and strength testing, range of motion, and PROs. A total of 350 patients met inclusion criteria. The average age was 26.9 ± 6.5 years, with 34% females and 36% professional athletes. Total and component HST scores were significantly associated with measure of strength most strongly for flexion (rs = −0.20, p < 0 .001), extension (rs = −0.24, p<.001) and external rotation (rs = −0.20, p < 0 .001). Lateral and diagonal agility, components of HST, were also significantly associated with muscle strength imbalances between internal rotation versus external rotation (rs = −0.18, p=0.01) and flexion versus extension (rs = 0.12, p=0.03). In terms of range of motion, a significant correlation was detected between HST and internal rotation (rs = −0.19, p < 0 .001). Both the total and component HST scores were positively correlated with pre-operative mHHS, WOMAC, and HOS-SSS (p<.001 for all rs). The Hip Sport Test correlates with strength, range of motion, and PROs in the preoperative setting of hip arthroscopy. This test alone and in combination with other diagnostic examinations can provide valuable information about initial hip function and patient prognosis


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 61 - 61
1 Dec 2022
Zhu S Ogborn D MacDonald PB McRae S Longstaffe R Garofalo J
Full Access

While controversy remains as to the relative benefit of operative (OM) versus non-operative management (NOM) of Achilles tendon ruptures (ATR), few studies have examined the effect on high impact maneuvers such as jumping and hopping. The purpose of this study is to compare functional performance and musculotendinous morphology in patients following OM or NOM for acute ATR. Eligible patients were aged 18-65 years old with an ATR who underwent OM or NOM within three weeks of injury and were at least one-year post injury. Gastrocnemius muscle thickness and Achilles tendon length and thickness were assessed with ultrasound. Functional performance was examined with single-leg hop tests and isokinetic plantar strength at 60o/s and 120o/s. 24 participants completed testing (12/ group). Medial (OM: 2.2 ± 0.4 cm vs 1.9 ± 0.3 cm, NOM 2.15 ± 0.5 cm vs 1.7 ± 0.5 cm; p = 0.002) and lateral (OM 1.8 ± 0.3 cm vs 1.5 ± 0.4 cm, NOM 1.6 ± 0.4 cm vs 1.3 ± 0.5 cm; p = 0.008) gastrocnemius thickness were reduced on the affected limb. The Achilles tendon was longer (OM: 19.9 ± 2.2 cm vs 21.9 ± 1.6 cm; NOM: 19.0 ± 3.7 cm vs 21.4 ± 2.9 cm; p = 0.009) and thicker (OM: 0.48 ± 0.16 cm vs 1.24 ± 0.20 cm; NOM: 0.54 ± 0.08 cm vs 1.13 ± 0.23 cm; p < 0.001) on the affected limb with no differences between groups. Affected limb plantar flexion torque at 20o plantar flexion was reduced at 60o/s (OM: 55.6 ± 20.2 nm vs 47.8 ± 18.3 nm; NOM: 59.5 ± 27.5 nm vs 44.7 ± 21.0 nm; p = 0.06) and 120o/s (OM: 44.6 ± 17.9 nm vs 36.6 ± 15.0 nm; NOM: 48.6 ± 16.9 nm vs 35.8 ± 10.7 nm; p = 0.028) with no group effect. There was no difference in single leg hop performance. Achilles tendon length explained 31.6% (p = 0.003) and 18.0% (p = 0.025) of the variance in plantar flexion peak torque limb symmetry index (LSI) at 60o/s and 120o/s respectively. Tendon length explained 28.6% (p=0.006) and 9.5% (p = 0.087) of LSI when torque was measured at 20o plantar flexion at 60o/s and 120o/s respectively. Conversely, tendon length did not predict affected limb plantar flexion peak torque (nm), angle-specific torque at 20o plantar flexion (nm) and affected limb single leg hop distance (cm) or LSI (%). There was no difference in tendon length between treatment groups and deficits in gastrocnemius thickness and strength are persistent. Deficits in the plantar flexion strength LSI are partially explained by increased tendon length following Achilles tendon rupture, regardless of treatment strategy. Hop test performance is maintained and may be the result of compensatory movements at other joints despite persistent plantarflexion weakness


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 31 - 31
1 Oct 2022
Alharthi S Meakin J Fulford J
Full Access

Purpose of study and background. Spinal muscle area (SMA) is often employed to assess muscle functionality and is important for understanding the risk individuals may have of developing back pain or the risk of postural instability and falls.. However, handgrip strength (HGS) has also been utilized as a measure of general muscle capacity. This study aimed to examine the relationship between SMA and HGS to assess whether the latter could be used as an accurate indicator of the former. Methods. 150 participants (75 males and 75 females, aged 47–70 years) were selected from the UK Biobank dataset. Handgrip strength values were extracted and averaged over left and right values. Abdominal MRI images were examined and cross-sectional area of the erector spinae and multifidus determined at the L3/4 level and summed to provide a total muscle area. Results. HGS and SMA (mean±sd) were 39.6 ± 7.4 kg and 4664 ± 868 mm. 2. for males and 24.7 ± 5.9 kg, and 3822 ± 579 mm. 2. for females. Pearson correlation between HGS and SMA was r = 0.41 for males (p = <0.001), r = 0.40 for females (p = <0.001), and r = 0.61 for the combined groups (p<0.001). Conclusion. Significant correlations were found between HGS and SMA for individual sexes and combined groups. However, although HGS may be a useful measure for predicting modifications in group responses in spinal muscle function, for example, following an intervention, it does not have the power to confidently predict muscle values at an individual participant level. Conflicts of interest: No conflicts of interest. Sources of funding: Prince Sattam University, KSA, provided a PhD scholarship for Salman Alharthi


Bone & Joint Research
Vol. 10, Issue 2 | Pages 105 - 112
1 Feb 2021
Feng X Qi W Fang CX Lu WW Leung FKL Chen B

Aims. To draw a comparison of the pullout strengths of buttress thread, barb thread, and reverse buttress thread bone screws. Methods. Buttress thread, barb thread, and reverse buttress thread bone screws were inserted into synthetic cancellous bone blocks. Five screw-block constructs per group were tested to failure in an axial pullout test. The pullout strengths were calculated and compared. A finite element analysis (FEA) was performed to explore the underlying failure mechanisms. FEA models of the three different screw-bone constructs were developed. A pullout force of 250 N was applied to the screw head with a fixed bone model. The compressive and tensile strain contours of the midsagittal plane of the three bone models were plotted and compared. Results. The barb thread demonstrated the lowest pullout strength (mean 176.16 N (SD 3.10)) among the three thread types. It formed a considerably larger region with high tensile strains and a slightly smaller region with high compressive strains within the surrounding bone structure. The reverse buttress thread demonstrated the highest pullout strength (mean 254.69 N (SD 4.15)) among the three types of thread. It formed a considerably larger region with high compressive strains and a slightly smaller region with high tensile strains within the surrounding bone structure. Conclusion. Bone screws with a reverse buttress thread design will significantly increase the pullout strength. Cite this article: Bone Joint Res 2021;10(2):105–112


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1459 - 1463
1 Nov 2019
Enishi T Yagi H Higuchi T Takeuchi M Sato R Yoshioka S Nakamura M Nakano S

Aims. Rotational acetabular osteotomy (RAO) is an effective joint-preserving surgical treatment for acetabular dysplasia. The purpose of this study was to investigate changes in muscle strength, gait speed, and clinical outcome in the operated hip after RAO over a one-year period using a standard protocol for rehabilitation. Patients and Methods. A total of 57 patients underwent RAO for acetabular dysplasia. Changes in muscle strength of the operated hip, 10 m gait speed, Japanese Orthopaedic Association (JOA) hip score, and factors correlated with hip muscle strength after RAO were retrospectively analyzed. Results. Three months postoperatively, the strength of the operated hip in flexion and abduction and gait speed had decreased from their preoperative levels. After six months, the strength of flexion and abduction had recovered to their preoperative level, as had gait speed. At one-year follow-up, significant improvements were seen in the strength of hip abduction and gait speed, but muscle strength in hip flexion remained at the preoperative level. The mean JOA score for hip function was 91.4 (51 to 100)) at one-year follow-up. Body mass index (BMI) showed a negative correlation with both strength of hip flexion (r = -0.4203) and abduction (r = -0.4589) one year after RAO. Although weak negative correlations were detected between strength of hip flexion one year after surgery and age (r = -0.2755) and centre-edge (CE) angle (r = -0.2989), no correlation was found between the strength of abduction and age and radiological evaluations of CE angle and acetabular roof obliquity (ARO). Conclusion. Hip muscle strength and gait speed had recovered to their preoperative levels six months after RAO. The clinical outcome at one year was excellent, although the strength of hip flexion did not improve to the same degree as that of hip abduction and gait speed. A higher BMI may result in poorer recovery of hip muscle strength after RAO. Radiologically, acetabular coverage did not affect the recovery of hip muscle strength at one year’s follow-up. A more intensive rehabilitation programme may improve this. Cite this article: Bone Joint J 2019;101-B:1459–1463


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims. Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. Methods. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests. Results. A total of 130 studies using 15 distinct objective functional assessment methods (FAMs) were identified. The most frequently used method was instrumented gait/motion analysis, followed by the Timed-Up-and-Go test (TUG), 6 minute walk test, timed stair climbing test, and various strength tests. These assessments were characterized by their diagnostic precision and applicability to daily activities. Wearables were frequently used, offering cost-effectiveness and remote monitoring benefits. However, their accuracy and potential discomfort for patients must be considered. Conclusion. The integration of objective functional assessments in THA presents promise as a progress-tracking modality for improving patient outcomes. Gait analysis and the TUG, along with advancing wearable sensor technology, have the potential to enhance patient care, surgical planning, and rehabilitation. Cite this article: Bone Joint J 2024;106-B(8):764–774


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims. Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Methods. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites. Results. We initially identified 4,402 clinical trials, 27 of which were eligible for inclusion and analysis, including nine shoulder surgery trials, eight knee surgery trials, two ankle surgery trials, two hand surgery trials, and six peripheral nerve graft trials. Nine of the trials were completed. We identified only one product that will be commercially available for use in knee surgery with significant mechanical load resistance. Peracetic acid and gamma irradiation were frequently used for sterilization. Conclusion. Despite the demand for decellularized tissue, few decellularized tissue products are currently commercially available, particularly for the knee joint. To be viable in orthopaedic surgery, decellularized tissue must exhibit biocompatibility and mechanical strength, and these requirements are challenging for the clinical application of decellularized tissue. However, the variety of available decellularized products has recently increased. Therefore, decellularized grafts may become a promising option in orthopaedic surgery. Cite this article: Bone Joint Res 2023;12(3):179–188


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 957 - 963
1 Sep 2024
Baek CH Kim JG Kim BT

Aims. Favourable short-term outcomes have been reported following latissimus dorsi tendon transfer for patients with an irreparable subscapularis (SSC) tendon tear. The aim of this study was to investigate the long-term outcomes of this transfer in these patients. Methods. This was a retrospective study involving 30 patients with an irreparable SSC tear and those with a SSC tear combined with a reparable supraspinatus tear, who underwent a latissimus dorsi tendon transfer. Clinical scores and active range of motion (aROM), SSC-specific physical examination and the rate of return to work were assessed. Radiological assessment included recording the acromiohumeral distance (AHD), the Hamada grade of cuff tear arthropathy and the integrity of the transferred tendon. Statistical analysis compared preoperative, short-term (two years), and final follow-up at a mean of 8.7 years (7 to 10). Results. There were significant improvements in clinical scores, in the range and strength of internal rotation and aROM compared with the preoperative values in the 26 patients (87%) who were available for long-term follow-up. These improvements were maintained between short- and long-term follow-ups. Although there was a decreased mean AHD of 7.3 mm (SD 1.5) and an increased mean Hamada grade of 1.7 (SD 0.5) at final follow-up, the rate of progression of cuff tear arthropathy remained low-grade. Comparison between the isolated SSC and combined SSC and reparable supraspinatus tear groups showed no significant differences. At final follow-up, one patient (3.8%) had undergone revision surgery to a reverse shoulder arthroplasty (RSA). No neurological complications were associated with the procedure. Conclusion. Latissimus dorsi transfer for an irreparable SSC tendon tear resulted in a significant clinical improvement, particularly in pain, range and strength of internal rotation and aROM, which were maintained over a mean of 8.7 years following surgery. Given that this was a long-term outcome study, there was a low-grade progression in the rate of cuff tear arthropathy. Thus, the long-term clinical efficacy of latissimus dorsi tendon transfer in patients with irreparable SSC was confirmed as a joint-preserving procedure for these patients, suggesting it as an effective alternative to RSA in young, active patients without degenerative changes of the glenohumeral joint. Cite this article: Bone Joint J 2024;106-B(9):957–963


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 89 - 89
4 Apr 2023
Cui C Long Y Liu C Wong R Chow S Cheung W
Full Access

Sarcopenia is an age-related geriatric syndrome which is associated with subsequent disability and morbidity. Currently there is no promising therapy approved for the treatment of sarcopenia. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK) are expressed in bone and skeletal muscle. Activation of the NF-κB pathway mainly inhibits myogenic differentiation, which leads to skeletal muscle dysfunction and loss. LYVE1 and CD206 positive macrophage has been reported to be associated with progressive impairment of skeletal muscle function with aging. The study aims to investigate the effects of an anti-RANKL treatment on sarcopenic skeletal muscle and explore the related mechanisms on muscle inflammation and the polarization status of macrophages. Sarcopenic senescence-accelerated mouse P8 (SAMP8) mice at month 8 were treated intraperitoneally with 5mg/kg anti-RANKL (IK22/5) or isotype control (2A3; Bio X Cell) antibody every 4 weeks and harvested at month 10. Senescence accelerated mouse resistant-1 (SAMR1) were collected at month 10 as the age-matched non-sarcopenic group. Ex-vivo functional assessment, grip strength and immunostaining of C/EBPa, CD206, F4/80, LYVE1 and PAX7 were performed. Data analysis was done with one-way ANOVA, and the significant level was set at p≤0.05. At month 10, tetanic force/specific tetanic force, twitch force/specific twitch force in anti-RANKL group were significantly higher than control group (all p<0.01). The mice in the anti-RANKL treatment group also showed significantly higher grip strength than Con group (p<0.001). The SAMP8 mice at month 10 expressed significantly more C/EBPa, CD206 and LYVE1 positive area than in SAMR1, while anti-RANKL treatment significantly decreased C/EBPa, CD206 and LYVE1 positive area. The anti-RANKL treatment protected against skeletal muscle dysfunctions through suppressing muscle inflammation and modulating M2 macrophages, which may represent a novel therapeutic approach for sarcopenia. Acknowledgment: Collaborative Research Fund (CRF, Ref: C4032-21GF)


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 53 - 58
1 Jan 2019
Billi F Kavanaugh A Schmalzried H Schmalzried TP

Aims. Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface. Materials and Methods. A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded. Results. Compared with normal conditions, early cementing increased the mean strength of the interface when using the two cements, Simplex and Palacos, by 48% and 72%, respectively. Late cementing reduced the strength by 47% and 73%, respectively. Cementing the keel increased the mean strength by 153% and 147%, respectively, for the two cements. Contamination of the metal/cement interface with fat reduced the mean strength by 99% and 94% for the two cements but adding cement to the underside of the tibial tray prior to insertion resulted in the mean strength being lowered by only 65% and 43%, respectively. Conclusion. In order to maximize the strength of the tibial tray/cement interface, cement should be applied to the component soon after mixing, contamination of the interface should be avoided, and the keel and the plateau should be cemented


Purpose. The Purpose of this study was to evaluate hamstring strength after autogenous hamstring anterior cruciate ligament(ACL) reconstruction with emphasis on deeper knee flexion angles. A comparison of hamstring strength between patients undergoing ACL reconstruction using semitendinosus(ST), and those with semitendinosus and Gracilis(STG) tendons was conducted. Method. Sixty patients were prospectively followed after undergoing ACL reconstruction surgery. Forty patients received a ST graft, and 20 patients had a STG graft. All patients had standard IKDC subjective knee evaluation completed, and had bilateral hamstring strengths tested using isokinetic testing with a Cybex Orthotron machine. In addition, a hand held Microfet dynamometer was used to measure hamstring strengths at deeper knee flexion angles at six, 12, and 24 months. Results. When comparing the surgical hamstring strength compared to the control side at deeper knee flexion angle, the STG and ST group had and average of 65.0% and 79.8% strength respectively at 6 months(p<0.05). While at one year the STG and ST group had 63.6%, and 78.3% of their hamstring strength(p<0.05). Conclusion. Hamstring strength at deeper flexion angles after ACL reconstruction using autogenous semitendinosus and gracilis tendons is significantly weaker than using semitendinosus alone. The use of single tendon ACL reconstruction should be advocated to decrease morbidity of this procedure


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 97 - 97
4 Apr 2023
van Knegsel K Zderic I Kastner P Varga P Gueorguiev B Knobe M Pastor T
Full Access

Recently, a new suture was designed to minimize laxity in order to preserve consistent tissue approximation while improving footprint compression after tendon repair. The aims of this study were: (1) to compare the biomechanical competence of two different high strength sutures in terms of slippage and failure load, (2) to investigate the influence of both knots number and different media (air, saline and fat) on the holding capacity of the knots. Alternating surgical knots of two different high-strength sutures (group1: FibreWire; group2: DynaCord; n = 105) were tied on two roller bearings with 50N tightening force. Biomechanical testing was performed in each medium applying ramped monotonic tension to failure defined in terms of either knot slippage or suture rupture. For each group and medium, seven specimens with either 3, 4, 5, 6, or 7 knots each were tested, evaluating their knot slippage and ultimate load to failure. The minimum number of knots preventing slippage failure and thus resulting in suture rupture was determined in each group and medium, and taken as a criterium for better performance when comparing the groups. In each group and medium failure occurred via suture rupture in all specimens for the following minimum knot numbers: group1: air – 7, saline – 7, fat – 7; group2: air – 6; saline – 4; fat – 5. The direct comparison between the groups when using 7 knots demonstrated significantly larger slippage in group1 (6.5 ± 2.2 mm) versus group2 (3.5 ± 0.4 mm) in saline (p < 0.01) but not in the other media (p ≥0.52). Ultimate load was comparable between the two groups for all three media (p ≥ 0.06). The lower number of required knots providing sufficient repair stability, smaller slippage levels and identical suture strength, combined with the known laxity alleviation effect demonstrate advantages of DynaCord versus FibreWire


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 321 - 330
1 Mar 2022
Brzeszczynski F Brzeszczynska J Duckworth AD Murray IR Simpson AHRW Hamilton DF

Aims. Sarcopenia is characterized by a generalized progressive loss of skeletal muscle mass, strength, and physical performance. This systematic review primarily evaluated the effects of sarcopenia on postoperative functional recovery and mortality in patients undergoing orthopaedic surgery, and secondarily assessed the methods used to diagnose and define sarcopenia in the orthopaedic literature. Methods. A systematic search was conducted in MEDLINE, EMBASE, and Google Scholar databases according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Studies involving sarcopenic patients who underwent defined orthopaedic surgery and recorded postoperative outcomes were included. The quality of the criteria by which a diagnosis of sarcopenia was made was evaluated. The quality of the publication was assessed using Newcastle-Ottawa Scale. Results. A total of 365 studies were identified and screened, 26 full-texts were reviewed, and 19 studies were included in the review. A total of 3,009 patients were included, of whom 2,146 (71%) were female and 863 (29%) were male. The mean age of the patients was 75.1 years (SD 7.1). Five studies included patients who underwent spinal surgery, 13 included hip or knee surgery, and one involved patients who underwent fixation of a distal radial fixation. The mean follow-up was 1.9 years (SD 1.9; 5 days to 5.6 years). There was wide heterogeneity in the measurement tools which were used and the parameters for the diagnosis of sarcopenia in the studies. Sarcopenia was associated with at least one deleterious effect on surgical outcomes in all 19 studies. The postoperative rate of mortality was reported in 11 studies (57.9%) and sarcopenia was associated with poorer survival in 73% (8/11) of these. The outcome was most commonly assessed using the Barthel Index (4/19), and sarcopenic patients recorded lower scores in 75% (3/4) of these. Sarcopenia was defined using the gold-standard three parameters (muscle strength, muscle quantity or quality, and muscle function) in four studies (21%), using two parameters in another four (21%) and one in the remaining 11 (58%). The methodological quality of the studies was moderate to high. Conclusion. There is much heterogeneity in the reporting of the parameters which are used for the diagnosis of sarcopenia, and evaluating the outcome of orthopaedic surgery in sarcopenic patients. However, what data exist suggest that sarcopenia impairs recovery and increases postoperative mortality, especially in patients undergoing emergency surgery. Further research is required to develop processes that allow the accurate diagnosis of sarcopenia in orthopaedics, which may facilitate targeted pre- and postoperative interventions that would improve outcomes. Cite this article: Bone Joint J 2022;104-B(3):321–330


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1244 - 1251
1 Dec 2023
Plastow R Raj RD Fontalis A Haddad FS

Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article: Bone Joint J 2023;105-B(12):1244–1251


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 970 - 977
1 Sep 2024
De Rus Aznar I Ávila Lafuente JL Hachem A Díaz Heredia J Kany J Elhassan B Ruiz Ibán MÁ

Rotator cuff pathology is the main cause of shoulder pain and dysfunction in older adults. When a rotator cuff tear involves the subscapularis tendon, the symptoms are usually more severe and the prognosis after surgery must be guarded. Isolated subscapularis tears represent 18% of all rotator cuff tears and arthroscopic repair is a good alternative primary treatment. However, when the tendon is deemed irreparable, tendon transfers are the only option for younger or high-functioning patients. The aim of this review is to describe the indications, biomechanical principles, and outcomes which have been reported for tendon transfers, which are available for the treatment of irreparable subscapularis tears. The best tendon to be transferred remains controversial. Pectoralis major transfer was described more than 30 years ago to treat patients with failed surgery for instability of the shoulder. It has subsequently been used extensively to manage irreparable subscapularis tendon tears in many clinical settings. Although pectoralis major reproduces the position and orientation of the subscapularis in the coronal plane, its position in the axial plane – anterior to the rib cage – is clearly different and does not allow it to function as an ideal transfer. Consistent relief of pain and moderate recovery of strength and function have been reported following the use of this transfer. In an attempt to improve on these results, latissimus dorsi tendon transfer was proposed as an alternative and the technique has evolved from an open to an arthroscopic procedure. Satisfactory relief of pain and improvements in functional shoulder scores have recently been reported following its use. Both pectoralis minor and upper trapezius transfers have also been used in these patients, but the outcomes that have been reported do not support their widespread use. Cite this article: Bone Joint J 2024;106-B(9):970–977


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article: Bone Joint Res 2022;11(8):561–574


Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 101 - 101
1 Apr 2019
Eymir M Unver B Karatosun V
Full Access

Background. Revision total knee arthroplasties (rTKA) are performed with increasing frequency due to the increasing numbers of primary arthroplasties, but very little is known regarding the influence of muscle strength impairments on functional limitations in this population. Objectives. The aim of this study was to assess relationship between muscle strength and functional level in patient with rTKA. Design and Methods. Twenty-three patients (8 males, 15 females) were included in the study with mean age 68.4±10 years. Patients performed 3 performance tests (50-Step Walking Test, 10 Meter Walk Test, 30-Second Chair-Stand Test), and one self-report test (HSS) were preferred to assess patients. The maximum isometric muscle strength of quadriceps femoris and hamstring muscles of all the patients was measured using Hand-Held Dynamometer (HHD). Results. While moderate-to-strong significant correlations was found between quadriceps femoris muscle strength and 30- Second Chair-Stand Test (r=0.390, p=0.049), 50-Step Walking Test (r=−0.530, p=0.005), 10 Meter Walk Test (r=−0.587, p=0.002), there were not significant correlation between HSS knee score and all performance-based tests (p>0.05). Also there were not significant correlation between hamstring muscle strength and all other measurement tests (p>0.05). Conclusion. The moderate-to-strong statistical significant correlation between quadriceps femoris muscle strength and functional performance tests suggests that improved postoperative quadriceps strengthening could be important to enhance the potential benefits of rTKA


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 121 - 127
1 Feb 2024
Filtes P Sobol K Lin C Anil U Roberts T Pargas-Colina C Castañeda P

Aims. Perthes' disease (PD) is a relatively rare syndrome of idiopathic osteonecrosis of the proximal femoral epiphysis. Treatment for Perthes' disease is controversial due to the many options available, with no clear superiority of one treatment over another. Despite having few evidence-based approaches, many patients with Perthes' disease are managed surgically. Positive outcome reporting, defined as reporting a study variable producing statistically significant positive (beneficial) results, is a phenomenon that can be considered a proxy for the strength of science. This study aims to conduct a systematic literature review with the hypothesis that positive outcome reporting is frequent in studies on the treatment of Perthes' disease. Methods. We conducted a systematic review of all available abstracts associated with manuscripts in English or with English translation between January 2000 and December 2021, dealing with the treatment of Perthes' disease. Data collection included various study characteristics, surgical versus non-surgical management, treatment modality, mean follow-up time, analysis methods, and clinical recommendations. Results. Our study included 130 manuscripts. Overall, 110 (85%) reported positive (beneficial) results, three (2%) reported negative results, and 17 (13%) reported no significant difference. Despite only 10/130 studies (8%) having a testable hypothesis, 71 (55%) recommended the use of their studied treatment methods for the patients, five (4%) made recommendations against the use of the studied treatment modality, and 54 (42%) did not make any recommendations. Conclusion. The overall rate for positive outcomes among included manuscripts regarding different treatment methods for Perthes' disease (85%) is higher than the 74% positive outcome rate found among studies for other surgically treated disorders and significantly higher than most scientific literature. Despite the lack of testable hypotheses, most manuscripts recommended their studied treatment method as a successful option for managing patients solely based on the reporting of retrospective data. Cite this article: Bone Joint J 2024;106-B(2):121–127