header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 67 - 67
1 Mar 2017
Ohmori T Kabata T Toru M Kajino Y Tadashi T Hasegawa K Inoue D Yamamoto T Takagi T Tsuchiya H
Full Access

INTRODUCTION

Dislocation is one of the most important complications in THA. Dual mobility cup (DMC) inserts reduce the risk for dislocation after total hip arthroplasty by increasing the oscillation angle. A lower rate of dislocation with use of a DMC insert has been reported in different studies. But there is no available research that clearly delineates the stability advantages of DMC inserts in primary THA. The aim of our study was to evaluate the area of the safe zone for a DMC insert, compared to a fixed insert for different anteversion angles of the femoral component.

Material and Methods

A model of the pelvis and femur were developed from computed tomography images. We defined the coordinate system of the pelvis relative to the anterior pelvic plane and the coordinate system of the femur relative to the posterior condylar plane. In our model, we simulated a positive anteversion position of the acetabular cup. The lower border for cup inclination is 50°. The safe zone was evaluated for the following range of motion of the implant: 120° of flexion, 90° of flexion 30° of internal rotation, 30° of extension, 40° of abduction, 40° of adduction, and 30° of external rotation. (Fig.1) The safe zone was calculated for both a fixed insert and a DMC insert over a pre-determined range of three-dimensional motion, and the effect of increasing the anteversion position of the femoral component from 5° to 35° quantified. The ratio of the safe zone for a DMC insert to a fixed insert was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 31 - 31
1 Mar 2017
Tadashi T Kabata T Kajino Y Takagi T
Full Access

Background

One of the serious postoperative complications associated with joint replacement is bacterial infection. In our recent investigations, iodine supported titanium implants demonstrated antibacterial activity in both in vitro studies and clinical trials. But it is not clear whether iodine treated titanium implants produce strong bonding to bone. This study evaluated the bone bonding ability of titanium implants with and without iodine surface treatments.

Methods

Titanium rods were implanted in intramedullary rabbit femur models, in regard to the cementless hip stem. The implant rods were 5mm in diameter and 25mm in length. Half of the implants were treated with iodine (ID implants) and the other half were untreated (CL implants). The rods were inserted into the distal femur; ID implants into the right femur and CL implants into the left. We assessed the bonding strength by a measuring pull-out test at 4, 8, and 12 weeks after implantation. The bone-implant interfaces were evaluated at 4 weeks after implantation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 40 - 40
1 Feb 2017
Kajino Y Kabata T Maeda T Tadashi T Hasegawa K Inoue D Yamamoto T Takagi T Ohmori T Tsuchiya H
Full Access

Introduction

The number of total hip arthroplasties has been increasing worldwide, and it is expected that revision surgeries will increase significantly in the near future. Although reconstructing normal hip biomechanics with extensive bone loss in the revision surgery remains challenging. The custom−made acetabular component produced by additive manufacturing, which can be fitted to a patient's anatomy and bone defect, is expected to be a predominant reconstruction material. However, there have been few reports on the setting precision and molding precision of this type of material. The purpose of this study was to validate the custom−made acetabular component regarding postoperative three−dimensional positioning and alignment.

Methods

Severe bone defects (Paprosky type 3A and 3B) were made in both four fresh cadaveric hip joints using an acetabular reamer mimicking clinical cases of acetabular component loosening or osteolysis in total hip arthroplasty. On the basis of computed tomography (CT) after making the bone defect, two types of custom−made acetabular components (augmented type and tri−flanged type) that adapted to the bone defect substantially were produced by an additive manufacturing machine. A confirmative CT scan was taken after implantation of the component, and then the data were installed in an analysis workstation to compare the postoperative component position and angle to those in the preoperative planning.