header advert
Results 1 - 8 of 8
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 90 - 90
2 Jan 2024
Almeida A Miranda M Crowe L Akbar M Rodrigues M Millar N Gomes M
Full Access

MicroRNA (miR) delivery to regulate chronic inflammation hold extraordinary promise, with new therapeutic possibilities emanating from their ability to fine-tune multiple target gene regulation pathways which is an important factor in controlling aberrant inflammatory reactions in complex multifactorial disease. However, several hurdles have prevented advancements in miR-based therapies. These include off-target effects of miRs, limited trafficking, and inefficient delivery. We propose a magnetically guided nanocarrier to transport therapeutically relevant miRs to assist self- resolving inflammation processes at injury sites and reduce the impact of chronic inflammation- related diseases such as tendinopathies. The high prevalence, significant socio-economic burden and increasing recognition of dysregulated immune mediated pathways in tendon disease provide a compelling rationale for exploring inflammation-targeting strategies as novel treatments in this condition. By combining cationic polymers, miR species (e.g., miR 29a, miR155 antagonist), and magnetic nanoparticles in the form of magnetoplexes with highly efficient magnetofection procedures, we developed inexpensive, easy-to-fabricate, and biocompatible systems with competent miR-binding and fast cellular uptake into different types of human cells, namely macrophages and tendon-derived cells. The system was shown to be cell-compatible and to successfully modulate the expression and production of inflammatory markers in tendon cells, with evidence of functional pro-healing changes in immune cell phenotypes. Hence, magnetoplexes represent a simple, safe, and non-viral nanoplatform that enables contactless miR delivery and high- precision control to reprogram cell profiles toward improved pro-regenerative environments.

Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM

RES Hub (Norte-01-0145-FEDER-022190).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 115 - 115
2 Jan 2024
Akbar M Crowe L Woolcock K Cole J McInnes I Millar N
Full Access

Dupuytren's disease (DD) is a fibroproliferative soft tissue disease affecting the palmar fascia of the hand causing permanent and irreversible flexion contracture. Aberrant fibrosis is likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in soft tissue fibrosis in diseases such as DD is not well established. Therefore, we conducted a comprehensive multi-omic study investigating the epigenetic profiles that influence gene expression in DD pathology. Using control (patients undergoing carpal tunnel release) and diseased fibroblasts (patients undergoing Dupuytren's fasciectomy), we conducted ATAC-seq to assess differential chromatin accessibility between control and diseased fibroblasts. Additionally, ChIP-seq mapped common histone modifications (histone H4; H3K4me3, H3K9me3, H3K27me3, H4K16Ac, H4K20Me3) associated with fibrosis. Furthermore, we extracted RNA from control and DD tissue and performed bulk RNA-seq.

ATAC-seq analysis identified 2470 accessible genomic loci significantly more accessible in diseased fibroblasts compared to control. Comparison between diseased and control cells identified numerous significantly different peaks in histone modifications (H4K20me3, H3K27me3, H3K9me3) associated with gene repression in control cells but not in diseased cells. Pathway analysis demonstrated a substantial overlap in genes being de-repressed across these histone modifications (Figure 1). Both, ATAC-seq and ChIP-seq analysis indicated pathways such as cell adhesion, differentiation, and extracellular matrix organisation were dysregulated as a result of epigenetic changes. Moreover, de novo motif enrichment analysis identified transcription factors that possibly contributed to the differential gene expression between control and diseased tissue, including HIC1, NFATC1 and TEAD2. RNA-seq analysis found that these transcription factors were upregulated in DD tissue compared to control tissue.

The current epigenetic study provides insights into the aberrant fibrotic processes associated with soft tissue diseases such as DD and indicates that epigenetic-targeted therapies may be an interesting viable treatment option in future.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 13 - 13
1 Oct 2016
Ortiz A Dunning L Huesa C Ferrell W McInnes I Lockhart J Millar N Goodyear C Crilly A
Full Access

Osteoarthritis (OA) is no longer considered a cartilage-centric disease with remodelling of other joint tissues now recognized. While understudied, entheseal pathology is considered a secondary OA feature. A pivotal role for proteinase-activated receptor 2 (PAR2) in OA has been demonstrated previously in cartilage and subchondral bone at early time points, however the entheseal role of PAR2 has not been reported.

OA was induced by destabilization of the medial meniscus (DMM) in wild type (WT) and PAR2 deficient (KO) animals. At 4 weeks and one year post surgery, knee joints were harvested for histological analysis. Medial collateral ligament (MCL) width was measured by 2D planimetry analysis. Immunohistochemistry was used to characterize the MCL and anterior cruciate ligament (ACL). Data were expressed as mean±SEM (n=4–6/group) and analysed using Student's t-test, with p<0.05 as the criterion of significance.

MCL width increased between 4 weeks and 1 year in WT DMM (0.24 ±0.07 vs 0.40 ±0.008mm respectively, p<0.001). Interestingly, a significant reduction in MCL was observed in KO compared with WT at 1 year (0.23 ±0.005 vs 0.40 ±0.008mm respectively, p <0.001) post-DMM. Further characterization of DMM WT MCL and ACL at 4 weeks showed the presence of F4/80+ cells in addition to IL-33 and histamine. At one year post-surgery, a cellular infiltrate was observed in MCL DMM WT but absent in KO mice. Histological evaluation revealed an absence of F4/80+ cells but the presence of a PAR2+ population, subsequently identified as hypertrophic-like chondrocytes (RUNX2) and chondrocytes-like cells (SOX9).

Deletion of PAR2 affords long-term protection against ligament remodelling and demonstrates a critical role for this receptor in both OA joint pathology and ligament injuries. While PAR2 appears to be a credible therapeutic target in OA entheseal pathology, further understanding of the molecular mechanism regulated by this receptor will be required.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2016
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

One of the most common bacteria in orthopaedic prosthetic infections is Staphylococcus Aureus. Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface.

Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion on nanofabricated materials. We hypothesise that surface nanotopography impacts the differential ability of staphylococci species to adhere via altered metabolomics and may reduce orthopaedic implant infection rate.

Bacteria were grown and growth conditions optimised. Polystyrene and titanium (Ti) nanosurfaces were studied. The polystyrene surfaces had different nanopit arrays, while the Ti surfaces expressed different nanowire structures. Adhesion analysis was performed using fluorescence imaging, quantitative PCR and bacterial percentage coverage calculations. Further substitution with ‘heavy’ labelled glucose into growth medium allowed for bacterial metabolomic analysis and identification of any up-regulated metabolites and pathways.

Our data demonstrates reduced bacterial adhesion on specific nanopit polystyrene arrays, while nanowired titanium showed increased bacterial adhesion following qPCR (P<0.05) and percentage coverage calculations (P<0.001). Further metabolomic analysis identified significantly increased intensity counts of specific metabolites (Pyruvate, Aspartate, Alanine and Carbamoyl aspartate).

Our study shows that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. The identification of metabolic pathways involved in adhesion may allow for a targeted approach to biofilm eradication in S. aureus. This is of significant benefit to both the patient and the surgeon, and may well extend far beyond the realms of orthopaedics.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 16 - 16
1 Oct 2016
Crowe L Akbar M Kitson S Reilly J Kerr S Murrell G McInnes I Gilchrist D Millar N
Full Access

Alarmins- also referred to as damage associated molecular patterns (DAMPS)- are endogenous molecules mobilized in response to tissue damage known to activate the innate immune system and regulate tissue repair and remodelling. The molecular mechanisms that regulate inflammatory and remodelling pathways in tendinopathy are largely unknown therefore identifying early immune effectors is essential to understanding the pathology. S100A8 and S100A9 are low molecular weight calcium binding proteins primarily released by activated phagocytes in an inflammatory setting and also secreted as a heterodimeric complex that exhibits cytokine like functions. Based on our previous investigations we sought evidence of S100A8/A9 expression in human tendinopathy and thereafter, to explore mechanisms whereby S100 proteins may regulate inflammatory mediators and matrix regulation in human tenocytes.

Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing ‘early pathology’) biopsies were collected from patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from patients undergoing arthroscopic stabilisation surgery. S100A8/A9 expression was analysed at transcript and protein level using quantitative RT-PCR and immunohistochemistry, respectively. Primary human tenocytes were cultured from hamstring tendon tissue obtained during hamstring tendon ACL reconstruction. The in vitro effect of recombinant human S100 A8/A9 on primary human tenocytes was measured using quantitative RT-PCR and ELISA.

Immunohistochemistry of tendinopathic tissues demonstrated the presence of S100 A8/A9 in diseased tissues compared to control tissue. In addition, early pathological diseased tissue indicated greater S100A9 expression compared with established diseased pathology. These findings were reflected by data obtained at transcript level from diseased tissues. Recombinant human S100A8, A9 and A8/A9 complex led to significant increase in expression of inflammatory mediators, including IL-6 in vitro. Further analysis via quantitative RT-PCR demonstrated recombinant S100A8, A9 and A8/A9 complex treatment on tenocytes, in vitro, had no direct effect on the expression of genes involved in matrix remodelling.

The presence of S100A8 and S100A9 in early tendinopathic lesions suggests expression is upregulated in response to cellular damage. S100A8 and S100A9 are endogenous ligands of Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE). These receptors have known regulatory effects on immune mediated cytokine production. We propose S100A8 and S100A9 as active alarmins in the early stages of tendinopathy and thus targeting of its downstream signalling may offer novel therapeutic approaches in the management of human tendon disorders.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 2 - 2
1 Apr 2015
Hansom D Ramage G Burgess K Gadengaard N Millar N Clarke J
Full Access

The most common bacteria in orthopaedic prosthetic infections are Staphylococcus, namely Staphylococcus Epidermidis (SE) and Staphylococcus Aureus (SA). Infection causes implant failure due to biofilm production. Biofilms are produced by bacteria once they have adhered to a surface.

Nanotopography has major effects on cell behaviour. Our research focuses on bacterial adhesion and biofilm formation on nanofabricated materials. Bacteria studied were clinically relevant from an orthopaedic perspective, SA and SE. We hypothesise that that nanosurfaces can modulate bacterial adherence and biofilm formation and may reduce orthopaedic implant infection rate.

Isolated bacteria were grown and growth conditions optimised. Bacterial concentrations were calculated by using qPCR. Statistical analysis allowed identification of optimal biofilm growth conditions. These were refined on standard, non-nanopatterned surfaces, and then control and nanopatterned polystyrene (nanopits) and titanium plates (nanowires). Adhesion analysis was performed using fluorescence imaging and quantitative PCR.

4 bacterial strains were isolated and cultured. Growth kinetics based on 24hr cultures allowed isolation of optimal media for biofilm conditions (Dulbecco's Modified Eagle Medium with additional supplements). Highest bacterial concentrations were found following 2hrs incubation with Lysozyme during qPCR. Bacterial concentration significantly increased between 30, 60 and 90 minutes incubation. Differences in percentage coverage on different polysyrene nanosurfaces (nanopits) were noted varying. This was confirmed by qPCR extractions that showed different bacterial concentrations on different nanopatterns. Titanium nanowire surfaces significantly increased bacterial adhesion (P<0.05).

Our study cultured and quantified bacterial biofilm and suggests that by altering nanotopography, bacterial adhesion and therefore biofilm formation can be affected. Specific nanopatterned surfaces may reduce implant infection associated morbidity and mortality. Clearly this is of significant benefit to the patient, the surgeon and the NHS, and may well extend far beyond the realms of orthopaedics.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 20 - 20
1 Aug 2013
Elias-Jones C Reilly J Kerr S Meek R Patil S Kelly M Campton L McInnes I Millar N
Full Access

Femoroacetabular impingement (FAI) is a significant cause of osteoarthritis in young active individuals but the pathophysiology remains unclear. Increasing mechanistic studies point toward an inflammatory component in OA. This study aimed to characterise inflammatory cell subtypes in FAI by exploring the phenotype and quantification of inflammatory cells in FAI versus OA samples.

Ten samples of labrum were obtained from patients with FAI (confirmed pathology) during open osteochondroplasty or hip arthroscopy. Control samples of labrum were collected from five patients with osteoarthritis undergoing total hip arthroplasty. Labral biopsies were evaluated immunohistochemically by quantifying the presence of macrophages (CD68 and CD202), T cells (CD3), mast cells (mast cell tryptase) and vascular endothelium (CD34).

Labral biopsies obtained from patients with FAI exhibited significantly greater macrophage, mast cell and vascular endothelium expression compared to control samples. The most significant difference was noted in macrophage expression (p<0.01). Further sub typing of macrophages in FAI using CD202 tissue marker revealed and M2 phenotype suggesting that these cells are involved in a regenerate versus a degenerate process. There was a modest but significant correlation between mast cells and CD34 expression (r=0.4, p<0.05) in FAI samples.

We provide evidence for an inflammatory cell infiltrate in femoroacetabular impingement. In particular, we demonstrate significant infiltration of mast cells and macrophages suggesting a role for innate immune pathways in the events that mediate hip impingement. Further mechanistic studies to evaluate the net contribution and hence therapeutic utility of these cellular lineages and their downstream processes may reveal novel therapeutic approaches to the management of early hip impingement.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 30 - 30
1 Jun 2012
Millar N Reilly J Leach W Rooney B Murrell G McInnes I
Full Access

The objective was to seek evidence of hypoxia in early human tendinopathy and thereafter, to explore mechanisms whereby tissue hypoxia may regulate apoptosis, inflammatory mediators and matrix regulation in human tenocytes.

Fifteen torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing ‘early pathology’) biopsies were collected from patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from 10 patients undergoing arthroscopic stabilisation surgery. Markers of hypoxia were quantified by immunohistochemical methods. Human tendon-derived primary cells were derived from hamstring tendon tissue obtained during hamstring tendon ACL reconstruction. The impact of hypoxia upon tenocyte biology ex vivo was measured using quantitative RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining.

Increased expression of HIF 1a, Bcl-2 and clusterin (hypoxic and apoptotic markers) was detected in subscapularis tendon samples compared to both matched torn samples and non matched control samples (p<0.01). Hypoxic tenocytes exhibited increased production of proinflammatory cytokines (p<0.001), altered matrix regulation (p<0.01) with increased production of Collagen type III operating through a MAPK dependent pathway. Finally, hypoxia increased expression of several mediators of apoptosis and thereby promoted tenocyte apoptosis.

Hypoxia promotes expression of proinflammatory cytokines, key apoptotic mediators and drives matrix component synthesis towards a collagen type III profile by human tenocytes. We propose hypoxic cell injury as a critical pathophysiological mechanism in early tendinopathy offering novel therapeutic opportunities in the management of tendon disorders.