header advert
Results 121 - 140 of 984
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 360 - 364
1 Mar 2020
Jenkins PJ Stirling PHC Ireland J Elias-Jones C Brooksbank AJ

Aims

The aim of this study was to examine the recent trend in delivery of arthroscopic subacromial decompression (ASD) in Scotland and to determine if this varies by geographical location.

Methods

Scottish Morbidity Records were reviewed retrospectively between March 2014 and April 2018 to identify records for every admission to each NHS hospital. The Office of Population Censuses and Surveys (OPCS-4) surgical codes were used to identify patients undergoing primary ASD. Patients who underwent acromioclavicular joint excision (ACJE) and rotator cuff repair (RCR) were identified and grouped separately. Procedure rates were age and sex standardized against the European standard population.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 45 - 45
1 Feb 2020
Delgadillo L Jones H Noble PC
Full Access

Background

Cementless Total Knee Arthroplasty has been developed to reduce the incidence of failure secondary to aseptic loosening, osteolysis and stress-induced osteopenia, especially in younger and more active patients. However, failures are still more common compared to cemented components, especially those involving the tibia. It is hypothesized that this is caused by incomplete contact between the tibial tray and the underlying bony surface due to: (i) inadequate flatness of the tibial osteotomy, or (ii) failure of implantation to spread the area of contact over the exposed cancellous surface. In the present study we compare the contact area developed during implantation of a cementless tray as a function of the initial flatness of the tibial osteotomy.

Method

Eight joint replacement surgeons prepared 14 cadaveric knees for cementless TKR using a standard instrumentation set (ZimmerBiomet Inc). The tibial osteotomy was created using an oscillating bone saw and a 1.27mm blade (Stryker Inc) directed by a slotted cutting guide mounted on an extramedullary rod and fixed to the tibia with pins and screws. The topography of the exposed cancellous surface was captured with a commercial laser scanner (Faro Inc, Halifax, approx. 33,000 surface points). 3D computer models of each tibial surface were generated in a CAD environment (Rapidform, Inuus). After scanning, a cementless tibial tray was implanted on the prepared tibial surface using a manual impactor. The tray-tibia constructs were dissected free of soft tissue, embedded in mounting resin, and sectioned with a diamond wafering saw. Points of bone-tray contact and interface separation were identified by stereomicroscopy and incorporated in the 3D computer models. Maps were generated depicting contacting and non-contacting areas Each model was subdivided into 7 zones for characterizing the distribution of interface contact in terms of anatomic location.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 48 - 48
1 Feb 2020
Jones H Foley E Garrett K Noble P
Full Access

Introduction

Corrosion products from modular taper junctions are a potent source of adverse tissue reactions after THR. In an attempt to increase the area of contact and resistance to interface motion in the face of taper mismatches, neck trunnions are often fabricated with threaded surfaces designed to deform upon assembly. However, this may lead to incomplete contact and misalignment of the head on the trunnion, depending upon the geometry and composition of the mating components. In this study we characterized the effect of different femoral head materials on the strength and area of contact of modular taper constructs formed with TiAlV trunnions.

Materials and Methods

Three groups of 36mm femoral heads (CoCr, Biolox ceramic; Oxinium) and matching Ti-6Al-4V rods with 12/14 trunnions were selected for use in this study. The surface of each trunnion was coated with a 20nm layer of gold applied by sputter-coating in vacuo. Each head/trunnion pair was placed in an alignment jig and assembled with a peak axial impaction force of 2000N using a drop tower apparatus. After assembly, each taper was disassembled in a custom apparatus mounted in a mechanical testing machine (Bionix. MTS. After separation of the components, the surface of each trunnion was examined with backscattered electron microscopy to reveal the area of disruption of the original gold-coated surface. Images encompassing the entire surface of the trunnion were collected and quantified by image processing.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 112 - 112
1 Feb 2020
Kreuzer S Madurawe C Pierrepont J Jones T
Full Access

Introduction

In total hip arthroplasty, correct sizing is critical for fixation and longevity of cementless components. Previously, three-dimensional CT templating has been shown to be more accurate than using 2D radiographs. The accuracy of the Optimized Positioning System (OPSTM) planning software has not been reported. The aim of this study was to measure the accuracy of the OPS planning software in predicting the implanted acetabular cup and femoral stem size when used with the direct anterior approach.

Method

Between October 2018 and March 2019, 95 patients received a bone preserving cementless MiniHip stem (Corin, UK). Sixty-three of these patients also received a cementless Trinity cup (Corin, UK). All patients were sent for OPSTM pre-operative planning, a patient-specific dynamic modelling software used to determine the optimal acetabular and femoral component size and positions. Average age was 57 (28 to 78) and 44% were female. All cases were performed using the direct anterior approach. The sizes of implants used were retrospectively compared to the planned OPSTM sizes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 42 - 42
1 Feb 2020
Ismaily S Parekh J Han S Jones H Noble P
Full Access

INTRODUCTION

In theory, Finite Element Analysis (FEA) is an attractive method for elucidating the mechanics of modular implant junctions, including variations in materials, designs, and modes of loading. However, the credence of any computational model can only be established through validation using experimental data. In this study we examine the validity of such a simulation validated by comparing values of interface motion predicted using FEA with values measured during experimental simulation of stair-climbing.

MATERIALS and METHODS

Two finite element models (FEM) of a modular implant assembly were created for use in this study, consisting of a 36mm CoCr femoral head attached to a TiAlV rod with a 14/12 trunnion. Two head materials were modelled: CoCr alloy (118,706 10-noded tetrahedral elements), and alumina ceramic (124,710 10-noded tetrahedral elements). The quasi-static coefficients of friction (µs) of the CoCr-TiAlV and Ceramic-TiAlV interfaces were calculated from uniaxial assembly (2000N) and dis-assembly experiments performed in a mechanical testing machine (Bionix, MTS). Interface displacements during taper assembly and disassembly were measured using digital image correlation (DIC; Dantec Dynamics). The assembly process was also simulated using the computational model with the friction coefficient set to µs and solved using the Siemens Nastran NX 11.0 Solver. The frictional conditions were then varied iteratively to find the value of µ providing the closest estimate to the experimental value of head displacement during assembly.

To validate the FEA model, the relative motion between the head and the trunnion was measured during dynamic loading simulating stair-climbing. Each modular junction was assembled in a drop tower apparatus and then cyclically loaded from 230–4300N at 1 Hz for a total of 2,000 cycles. The applied load was oriented at 25° to the trunnion axis in the frontal plane and 10° in the sagittal plane. The displacement of the head relative to the trunnion during cyclic loading was measured by a three-camera digital image correlation (DIC) system. The same loading conditions were simulated using the FEA model using the optimal value of µ derived from the initial head assembly trials.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 10 - 10
1 Feb 2020
Clark A Hounat A MacLean A Jones B Blyth M
Full Access

We report on the 5 year results of a randomized study comparing TKR performed using conventional instrumentation versus electromagnetic computer-assisted surgery.

This study analysed patient reported outcome measures (PROMs) at 5 years utilising the American Knee Society Score (AKSS), Oxford Knee Score (OKS), the Short Form 36 score and range of motion (ROM). Of the 200 patients enrolled 125 completed 5 year follow up, 62 in the navigated group and 63 in the conventional group. There were 28 deceased patients, 29 withdrawals and 16 lost to follow-up.

There was improvement in clinical function in most PROMs from 1-5 year follow up across both groups. OKS improved from a mean of 26.6 (12–55) to 35.1 (5–48). AKSS increased from 75.3 (0–100) to 78.4 (−10–100), SF36 from 58.9 (2.5–100) to 53.2 (0–100). ROM improved by an average 7 degrees from 110 degrees to 117 degrees (80–135). There was no statistically significant difference in PROMs between the groups at 5 years.

Patients undergoing revision surgery were identified from the dataset and global PACS. There were no revisions within 5 years in the navigated group and 3 revisions in the conventional group, two for infection and one for mid-flexion instability, giving an all cause revision rate of 3.06% at 5 years for this group.

There appears to be no significant advantage in clinical function for patients undergoing TKR for OA of the knee with electromagnetic navigation when compared to conventional techniques. There may be an advantage in reducing early revision rates using this technology.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 12 - 12
1 Feb 2020
Giebaly D Vats A Marshall C Leach B Rooney B McConnachie A Jones B Blyth M
Full Access

MOXIMED KineSpring® Knee Implant System is an Orthopaedic device designed for younger or highly active patients with osteoarthritis. The device is placed under the skin, is attached to the tibia and femur, and contains springs which help limit some of the forces that are transmitted through the knee during activities such as walking or running and thereby relieve pain that may be experienced by patients with early arthritis of the knee. The aim of this study is to determine the long term safety and efficacy of the KineSpring knee implant system.

This is a prospective case series involving two centres in Glasgow. 29 patients (mean age of 45.1 years and range 18-65 years) were recruited into the study between 2011 and 2016. The Primary outcome measure was Oxford knee score (OKS) at 2, 5 and 10 years post-operatively. Secondary outcome measures include device related complications and survival, patient reported functional outcome measures, patient satisfaction, pain levels and change in radiographic classification of osteoarthritis

At 2-year follow-up, 7 implants were removed (74.1% survival). Complications include deep infection, requiring removal in 1 patient, 2 implant failures requiring removal and one spring breakage. In comparison to pre-operative measures there was an improvement in the pain (3.58 vs. 5.20, p=0.02), stiffness (4.16 vs. 4.47, p=0.6) and OKS (32.4 vs. 36.9, p=0.03).

The KineSpring improves overall pain, stiffness and functional outcome at 2 years following surgery, however there was a high rate of removal and further long-term follow up analysis is required regarding its effectiveness.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 131 - 131
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

The advent of CT based 3D preoperative planning software for reverse total shoulder arthroplasty (RTSA) provides surgeons with more data than ever before to prepare for a case. Interestingly, as the usage of such software has increased, further questions have appeared over the optimal way to plan and place a glenoid implant for RTSA. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current RTSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a RTSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 6 - 6
1 Feb 2020
Crighton E Jenkins P Butterworth G Elias-Jones C Brooksbank A
Full Access

Combined glenoid and humeral bone loss has been identified as an important factor in predicting recurrence after arthroscopic shoulder stabilisation. The “glenoid track” concept is proposed to predict recurrent instability by comparing the relative size of the glenoid to the humeral bone defect. The aim of this study was to investigate whether assessment of the glenoid track on a pre-operative MR arthrogram could be used to predict subsequent instability in a typical UK population.

A retrospective study was undertaken of 175 primary arthroscopic stabilisation procedures of which 82% (n=143) were men. The median age was 26 years (IQR 22 to 32, range 16 to 77). The median follow-up was 76 months (range 21 to 125). A pre-operative MR arthrogram was used to determine if the shoulder was on-track or off-track. The endpoint of recurrent dislocation was examined.

The prevalence of “off-track” bone loss in this group was 14.2% (n=25). There were 6 (24%) dislocations in the off-track group compared with 5 (3.33%) dislocations in the on-track group (RR 7.2, 95% CI 2.45 to 20.5, p=0.001). At 5 years, the cumulative redislocation rate was 26.1% in the off-track group compared with 8.7% in on-track group. The rate of any recurrent instability was 60% (n=15) v 18% (n=27) (RR 3.33, 95% CI 2.02 to 5.20, p<0.0001). Glenoid track (on v off) was not predicted by gender (p=0.411).

In a typical UK population assessment of the glenoid track on an MR arthrogram can be used to risk stratify patients with shoulder instability.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 134 - 134
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic total shoulder arthroplasty (ATSA) provides surgeons with increased ability to visualize complex joint relationships and deformities. Interestingly, the advent of such software has seemed to create less of a consensus on the optimal way to plan an ATSA rather than more. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current ATSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place an ATSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_3 | Pages 11 - 11
1 Feb 2020
Johnston WD Razii N Banger MS Rowe PJ Jones BG MacLean AD Blyth MJG
Full Access

The objective of this study was to compare differences in alignment following robotic arm-assisted bi-unicompartmental knee arthroplasty (Bi-UKA) and conventional total knee arthroplasty (TKA).

This was a prospective, randomised controlled trial of 70 patients. 39 TKAs were implanted manually, as per standard protocol at our institution, and 31 Bi-UKA patients simultaneously received fixed-bearing medial and lateral UKAs, implanted using robotic arm-assistance. Preoperative and 3-month postoperative CT scans were analysed to determine hip knee ankle angle (HKAA), medial distal femoral angle (MDFA), and medial proximal tibial angle (MPTA). Analysis was repeated for 10 patients by a second rater to validate measurement reliability by calculating the intra-class correlation coefficient (ICC).

Mean change in HKAA towards neutral was 2.7° in TKA patients and 2.3° in Bi-UKA patients (P=0.6). Mean change in MDFA was 2.5° for TKA and 1.0° for Bi-UKA (P<0.01). Mean change in MPTA was 3.7° for TKA and 0.8° for Bi-UKA (P<0.01). Mean postoperative MDFA and MPTA for TKAs were 89.8° and 89.6° respectively, indicating orientation of femoral and tibial components perpendicular to the mechanical axis. Mean postoperative MDFA and MPTA for Bi-UKAs were 91.0° and 86.9° respectively, indicating a more oblique joint line orientation. Inter-rater agreement was excellent (ICC>0.99). Early functional activities, according to the new Knee Society Scoring System, favoured Bi-UKAs (P<0.05).

Robotic arm-assisted, cruciate-sparing Bi-UKA better maintains the natural anatomy of the knee in the coronal plane and may therefore preserve normal joint kinematics, compared to a mechanically aligned TKA. This has been achieved without significantly altering overall HKAA.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims

It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA).

Methods

We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1476 - 1478
1 Dec 2019
Bayliss L Jones LD

This annotation briefly reviews the history of artificial intelligence and machine learning in health care and orthopaedics, and considers the role it will have in the future, particularly with reference to statistical analyses involving large datasets.

Cite this article: Bone Joint J 2019;101-B:1476–1478


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 9 - 9
1 Oct 2019
Corp N Mansell G Stynes S Wynne-Jones G Hill J van der Windt D
Full Access

Background and aims

The EU-funded Back-UP project aims to develop a cloud computer platform to guide the treatment of low back and neck pain (LBNP) in first contact care and early rehabilitation. In order to identify evidence-based treatment options that can be recommended and are accessible to people with LBNP across Europe, we conducted a systematic review of recently published guidelines.

Methods

Electronic databases, including Medline, Embase, CINAHL, PsycINFO, HMIC, Epistemonikos, PEDro, TRIP, NICE, SIGN, WHO, Guidelines International Network (G-I-N) and DynaMed Plus were searched. We searched for guidelines published by European health professional or guideline development organisations since 2013, focusing on the primary care management of adult patients presenting with back or neck pain (including whiplash associated symptoms, radicular pain, and pregnancy-related LBP). The AGREE-II tool was used to assess the quality of guideline development and reporting.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 47 - 47
1 Oct 2019
Sodhi N Etcheson J Mohamed N Davila I Ehiorobo JO Anis HK Jones LC Delanois RE Mont MA
Full Access

Introduction

The purpose of this study was to analyze trends in the surgical management of ON in recent years. Specifically, we evaluated the annual prevalences of: 1) joint preserving procedures (osteotomies and core decompression/grafts) and 2) joint non-preserving procedures (total hip arthroplasties [THAs], revision THAs, partial THAs) for the treatment of osteonecrosis of the femoral head (ONFH) between 2009 and 2016.

Background

A total of 406,239 ONFH patients who were treated between 2009 and 2016 were identified from a nationwide database. Treatment procedures were extracted using ICD-9-CM and ICD-10-CM procedure codes. Annual rates of each of the above procedures were calculated and the trends in the procedure types were also evaluated. Chi-square tests were performed to compare the annual prevalence of each procedure. The mean annual prevalence over the 8-year study period was calculated for each procedure.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 55 - 55
1 Oct 2019
Byrd JWT Jones KS
Full Access

Introduction

Patients with hip abductor tendon tears amenable to endoscopic repair tend to be severely disabled and older. However, low preop baseline patient reported outcome (PRO) and advancing age are each often reported to be a harbinger of poor result with hip arthroscopy. Thus, the purpose of this study is to report the demographic makeup of this population and how these patients faired in terms of preop scores and reaching both Minimal Clinically Important Difference (MCID) and Substantial Clinical Benefit (SCB).

Methods

Sixty-six consecutive hips in 64 patients (2 bilateral) undergoing endoscopic abductor tendon repair with a hollow core bioabsorbable suture anchor and having achieved two-year follow-up were prospectively assessed with modified Harris Hip Score (mHHS) and international Hip Outcome Tool (iHOT) scores. The MCID for patients undergoing hip arthroscopy has previously been determined as 8 for the mHHS and 13 for the iHOT. SCB has been determined as 20 for the mHHS and 28 for the iHOT. Subgroups were compared using the independent samples t-test.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 48 - 48
1 Oct 2019
Walsh J Jones S Benedetto V Stockley R
Full Access

A statement of the purposes of the study and background

Lower back pain (LBP) is one of the ten leading causes of disease burden globally, producing significant detrimental effects on physical and emotional wellbeing whilst having a substantial economic burden for society. There is an inverse relationship between socio-economic status and pain prevalence. The effectiveness of a locally run ‘Back to Fitness Programme’ (6-week education and exercise programme) in the most deprived local authority area in England was evaluated.

A summary of the methods used and the results

Patients at Blackpool Hospitals NHS Trust over a 6-month timeframe were included. Initial data were collected from 49 patients (mean age 53.4 years, 67% female). The amount of final data collected varied per outcome measure due to a range of factors. Participants reported the programme had helped with their understanding of pain (n=16, 100%), ability to move around and function (n=15, 94%), and level of pain (n=14, 88%).

Looking at Roland Morris Disability Questionnaire scores (n=17), 88% (n=15) of patients indicated a reduction (n=12, 71%) or no change (n=3, 18%) in perceived disability. The Pain Self Efficacy Questionnaire (n=18) showed that 78% (n=14) of participants perceived an increase in their average level of confidence to move despite pain.

There was an overall improvement in understanding of pain reflected by Revised Neurophysiology of Pain Questionnaire scores (n=44): 89% (n=39) improved (n=36, 82%) or did not change (n=3, 7%). Regarding lumbar flexion post-programme (n=17), 77% (n=13) of participants demonstrated an improvement (n=9, 53%) or no change (n=4, 24%).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 5 - 5
1 Sep 2019
Greenwood J Hurley M McGregor A Jones F
Full Access

Purpose

The behavioural change wheel methodology and social cognitive theory were combined to inform and develop a rehabilitation programme following lumbar fusion surgery (REFS).

This qualitative study evaluated participant's experiences of lumbar fusion surgery, including REFS, to identify valued programme content (‘active ingredients’).

Background

A feasibility-RCT suggested REFS achieved a meaningful impact in disability and pain self-efficacy compared to ‘usual care’ (p=0.014, p=0.007).

In keeping with MRC guidance a qualitative evaluation was undertaken to understand possible mechanisms of action.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 68 - 76
1 Jun 2019
Jones CW Choi DS Sun P Chiu Y Lipman JD Lyman S Bostrom MPG Sculco PK

Aims

Custom flange acetabular components (CFACs) are a patient-specific option for addressing large acetabular defects at revision total hip arthroplasty (THA), but patient and implant characteristics that affect survivorship remain unknown. This study aimed to identify patient and design factors related to survivorship.

Patients and Methods

A retrospective review of 91 patients who underwent revision THA using 96 CFACs was undertaken, comparing features between radiologically failed and successful cases. Patient characteristics (demographic, clinical, and radiological) and implant features (design characteristics and intraoperative features) were collected. There were 74 women and 22 men; their mean age was 62 years (31 to 85). The mean follow-up was 24.9 months (sd 27.6; 0 to 116). Two sets of statistical analyses were performed: 1) univariate analyses (Pearson’s chi-squared and independent-samples Student’s t-tests) for each feature; and 2) bivariable logistic regressions using features identified from a random forest analysis.