header advert
Results 61 - 80 of 175
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 171 - 171
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction

Demineralised Bone Matrix (DBM) is widely used in Orthopaedics and dentistry as a bone graft substitute and may be used to augment bone formation in load bearing applications.

In this study we examine the effect of gamma irradiation and freeze drying on the tensile strength of Demineralised Cortical Bone (DCB).

Methods

Tibias were harvested from mature ewes and cut into bony strips. Demineralisation was done using 0.6M HCL and confirmed by X-ray. Specimens were washed until a pH of 7.0 +/_ 0.2 was achieved in the washing solutions.

Specimens were allocated into 4 groups; group (A) non freeze dried non gamma irradiated, group (B) freeze dried non gamma irradiated, group (C) non freeze dried gamma irradiated mention the level of gamma irradiation and group (D) freeze dried and gamma irradiated. The maximum tensile force and stress were measured. Statistical analysis using the Mann-Whitney U test was carried out.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 136 - 136
1 Sep 2012
El-Husseiny M Pendegrass C Elnikety S Haddad F Blunn G
Full Access

Introduction

Following amputation, residual stumps used to attach the external prostheses can be associated with sores, infection and skin necrosis. These problems could be overcome by off loading the soft tissues. Intraosseous transcutaneous amputation prostheses (ITAP) attach external implants directly to residual bone reducing these complications. However, a tight seal at the skin implant interface is crucial in preventing epithelial down-growth and infection. Fibronectin (Fn) and laminin 332 (Ln), enhance early cell growth and adhesion of keratinocytes. Silanization to titanium alloy (Ti) allows these proteins to bond to the metal directly. We hypothesize that silanized dual coatings of fibronectin and laminin (SiFnLn) will be more durable than absorbed proteins and that keratinocyte adhesion will be increased compared with Ti controls and single silanized proteins.

Methods

10 mm diameter Ti alloy discs were polished, sterilized and silanized. The kinetics of silanized single and dual protein coating attachment onto titanium alloy was quantified using radio-labelled Fn(125I-Fn) and Ln(125I-Ln). Coating durability was assessed when soaked in fetal calf serum (FCS) for 0, 1, 24, 48, 72hrs. Data was compared to un-silanized Ti discs with the same amount of adsorbed proteins. In order to study cell attachment 20 × 103 keratinocytes were seeded on the discs (n = 6): silanized (Si), silanized fibronectin (SiFn), silanized laminin (SiLn), silanized dual coating (SiFnLn) for 1, 4 and 24hrs. Adhesion of cells was assessed using mouse vinculin antibody for 2hrs and alexafluor for 1hr which stains focal adhesions responsible for attaching cells to surfaces. Axiovision Image Analysis software was used to measure cell area, vinculin markers per cell unit and per unit cell area on 15 cells per disc. Data was analysed in SPSS and significance was assumed at the 0.05 level.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 135 - 135
1 Sep 2012
El-Husseiny M Pendegrass C Haddad F Blunn G
Full Access

Introduction

Intraosseous transcutaneous amputation prostheses (ITAP) provide an alternative means of attaching artificial limbs for amputees. Conventional stump-socket devices are associated with soft tissue complications including; pressure sores and tissue necrosis. ITAP resolves these problems by attaching the exo-prosthesis transcutaneously to the skeleton. The aim of this study is to increase the attachment of dermal fibroblasts to titanium alloy in vitro. Fibronectin (Fn) and laminin 332 (Ln) enhance early cell growth and adhesion. We hypothesize that silanized dual coatings of fibronectin and laminin (SiFnLn) will be more durable when compared with adsorbed dual coating (AdFnLn), and will enhance early fibroblast growth and adhesion compared to single coatings.

Methods

The kinetics of dual single and dual protein coating attachment onto titanium alloy was quantified on silanized 10mm diameter discs using radiolabelled Fn (125I-Fn) and Ln (125I-Ln). Sixty discs were polished, sterilized and silanized. Coating durability was assessed when soaked in fetal calf serum (FCS) for 0, 1, 24, 48 and 72hrs. Data was compared to un-silanized Ti discs with the same coatings. Five thousand human dermal fibroblasts were seeded on discs (n = 6) of Ti polished alone (Pol), Ti with adsorbed fibronectin (AdFn), Ti with adsorbed laminin (AdLn), Ti adsorbed dual coating (AdFnLn), Ti silanized (Si), Ti silanized with fibronectin (SiFn), Ti silanized with laminin (SiLn), Ti silanized with a dual coating (SiFnLn) for 24hrs. In order to measure cell adhesion fibroblasts were fixed, vinculin stained using mouse vinculin antibody and alexa fluor. Axiovision Image Analysis software was used to measure cell area, vinculin focal adhesion markers per cell and per unit cell area. Data was analysed in SPSS and significance was assumed at the 0.05 level.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 488 - 488
1 Sep 2012
Chan O Coathup M Hing K Buckland T Campion C Blunn G
Full Access

INTRODUCTION

Autologous bone grafts are considered gold standard in the repair of bone defects. However they are limited in supply and are associated with donor site morbidity. This has led to the development of synthetic bone graft substitute (BGS) materials, many of which have been reported as being osteoinductive. The structure of the BGS is important and bone formation has been observed in scaffolds with a macroporous morphology. Smaller pores termed ‘strut porosity’ may also be important for osteoinduction. The aim of this study was to compare the osteoinductive ability of one silicate-substituted calcium phosphate (SiCaP) with differing strut porosities in an ectopic ovine model. Our hypothesis was that SiCaP with greater strut porosity would be more osteoinductive.

METHODS

The osteoinduction of SiCaP BGS with two different strut porosities (AF and AF++) was investigated. The materials had an identical chemical composition and morphological structure but differing strut porosity (AF=22.5%, AF++=47%). Implants were inserted into the paraspinal muscles in skeletally mature sheep. Procedures were carried out in compliance with UK Home Office regulations. There were 12 implants in each group. Implants remained in vivo for 8 and 12 weeks and on retrieval were prepared for undecalcified histology. Sections were stained and examined using light microscopy. A line intersection method was used to quantify bone, implant and implant surface/bone contact within seven random regions of interest along each implant. A Mann-Whitney U test was used for statistical analysis where p values < 0.05 were considered significant.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 101 - 101
1 Sep 2012
Maempel J Coathup M Calleja N Cannon S Briggs T Blunn G
Full Access

Background

Extendable proximal femoral replacements(PFR) are used in children with bone tumours in proximity to the proximal femoral physis, previously treated by hip disarticulation. Long-axis growth is preserved, allowing limb salvage. Since 1986, survival outcomes after limb salvage and amputation have been known to be equal.

Method

Retrospective review of all patients <16years undergoing extendable PFR at Royal National Orthopaedic Hospital (UK) between 04/1996 and 01/2006, recording complications, failures, procedures undertaken and patient outcomes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 51 - 51
1 Sep 2012
Maempel J Coathup M Calleja N Briggs T Cannon S Blunn G
Full Access

Background

Extendable partial femoral replacements (EPFR) permit limb salvage in children with bone tumours in proximity to the physis. Older designs were extended through large incisions or minimally invasive surgery. Modern EPFR are lengthened non-invasively. Lengthening improves functional score (Futani, 2006) but has been associated with complications including infection (Jeys, 2005). This study is the first to look specifically at the relationship between EPFR lengthening and complications.

Method

Retrospective review of 51 paediatric (<16 years) oncology patients undergoing primary (1 °) EPFR (minimally/noninvasive) between 06/1994 and 01/2006. Exclusions: 1 patient with 5cm extension without medical intervention and 5 patients with incomplete data.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 99 - 99
1 Sep 2012
Maempel J Coathup M Calleja N Maempel FZ Briggs T Cannon S Blunn G
Full Access

Background/Aims

The development of extendable prostheses has permitted limb salvage surgery in paediatric patients with bone tumours in proximity to the physis. Prostheses are extended to offset limb length discrepancy as the child grows. Aseptic loosening (AL) is a recognised complication. The implant stem must fit the narrow paediatric medullary canal and remain fixed while withstanding growth and increasing physical demands. Novel designs incorporate a hydroxyapatite (HA) coated collar that manufacturers claim improves bony ongrowth and stability, providing even stress distribution in stem and shoulder regions and providing a bone-implant seal, resulting in decreased AL and prolonged survival. This study aims to assess whether there is a relationship between bony ongrowth onto a HA collar and AL. Hypothesis: Bone ongrowth onto the HA collar of extendable prostheses is associated with more stable fixation and less AL despite patient growth.

Methods

Retrospective review of 51 primary partial femoral extendable prostheses implanted over 12 years from 1994–2006 (followed up to death at a mean of 2.5±2.2 years or last clinical encounter at a mean of 8.6 years) and 24 subsequent revisions, to ascertain failure rate and mode, together with a cohort study reviewing bony ongrowth onto the HA coated collar in 10 loose and 13 well fixed partial femoral, humeral and tibial implants. Patient growth was measured as a change in bone:implant-width ratio.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 79 - 79
1 Sep 2012
Vanhegan I Jassim S Sturridge S Ahir S Hua J Witt J Nielsen P Blunn G
Full Access

Introduction

A new conservative hip stem has been designed to address the complex problem of total hip arthroplasty in the younger population.

Objectives

To assess the stability and strain distribution of a new conservative hip stem.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 15 - 15
1 Aug 2012
Allen F Blunn G McCarthy I O'Donnell M Stevens M Goodship A
Full Access

Synthetic bone grafts are used in several major dental and orthopaedic procedures. Strontium, in the form of strontium ranelate, has been shown to reduce fracture risk when used to treat osteoporosis. The aim of the study was to compare bone repair in femoral condyle defects filled with either a 10% strontium substituted bioactive glass (StronBoneTM) or a TCP-CaSO4 graft. We hypothesise that strontium substituted bioactive glass increases the rate of bone ingrowth into a bone defect when compared to a TCP-CaSO4 ceramic graft.

A critical size defect was created in the medial femoral condyle of 24 sheep; half were treated with a Sr-bioactive glass (StronBoneTM), and in the other animals defects were filled TCP-CaSO4. Two time points of 90 and 180 days were selected. The samples were examined with regard to: bone mineral density (BMD) from peripheral quantitative CT (pQCT), mechanical properties through indentation testing, and bony ingrowth and graft resorption through histomorphometry.

The radiological density of Sr-bioactive glass in the defect is significantly higher than that of the TCP-CaSO4-filled defect at 90 and 180 days, (p=0.035 and p=0.000). At 90 days, the stiffness of the defect containing Sr-bioactive glass and is higher than that of the TCP-CaSO4 filled defect, (p=0.023). At 6 months there is no significant difference between the two materials. Histomorphometry showed no significant difference in bone ingrowth at any time point, however significantly more of the graft is retained for the StronBoneTM treatment group than the TCP-CaSO4 group at both 0 days (p=0.004) and 180 days (p=0.000). The amount of soft tissue within the defect was significantly less in the StronBoneTM group than for the TCP-CaSO4 group at 90 days (p=0.006) and 180 days (p=0.000)

The data shows the mechanical stability of the defect site is regained at a faster rate with the strontium substituted bioglass than the TCP-CaSO4 alternative. Histomorphmetry shows this is not due to increased bone ingrowth but may be due to the incorporation of stiff graft particles into the trabeculae. Sr-bioactive glass produces a stronger repair of a femoral condyle defect at 3 months compared with TCP-CaSO4.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 16 - 16
1 Aug 2012
Meswania J Biring G Wylie C Hua J Muirhead-Allwood S Blunn G
Full Access

Introduction

The National Joint Registry has recently identified failure of large head metal on metal hip replacements. This failure is associated with the high torque at the interface of standard modular taper junction leading to fretting and corrosion. A number of manufacturers produce mini spigots, which in theory, provide a greater range of motion as the neck head junction is reduced. However, the relative torque to interface ratio at this junction is also increased. In this study we investigated hypothesis that the use of small spigots (minispigots) will increase wear and corrosion on modular tapers.

Methods

Wear and corrosion of spigots were compared in-vitro when loaded with a force representative of the resultant force passing through the hip. The heads (female tapers) were made of cobalt-chrome-molybdenum (CoCrMo) and the stems (male tapers) of titanium alloy (Ti). Commercially available tapers and heads were used. The surface parameters & profiles were measured before & after testing. Electrochemical static and dynamic corrosion (pitting) tests were performed on minispigots under loaded and non-loaded conditions.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 100 - 100
1 Aug 2012
Coathup M Shawcross J Scarsbrook C Korda M Hanoun A Pickford M Agg P Blunn G
Full Access

Introduction

A modified anodisation technique where a titanium surface releases bactericidal concentrations of silver was developed and called Agluna. Our hypothesis was that silver incorporation was bactericidal and had no effects on the viability of fibroblasts and osteoblasts, would have no negative effect on interfacial shear strength and bone contact in an in vivo trans-cortical implant ovine model.

Methods

In vitro: Titanium alloy discs were either polished (Ti), anodised (Ano), anodised or Agluna treated (Ag) or anodised and Agluna treated followed by a conditioning step (Ag C). Conditioning was achieved by incubating discs in culture fluid for 48 hrs. The bactericidal effect of these discs was tested by measuring the zone of inhibition of different bacteria grown on agar. Live/dead staining was carried out and silver levels measured using atomic emission spectroscopy. 8 implants were inserted into each sheep (60 in total (n=5)). Grit blasted Titanium alloy (Gb) and Agluna treated grit blasted titanium alloy (Ag) at a silver concentration of 4-6 micrograms/cm2 were compared at 6 weeks. Gb implants, Ag (at 4-6micrograms/cm2), high dose Agluna implants with silver concentrations at 15-20micrograms/cm2 (HdAg) and a grit blasted anodised titanium alloy (Ano) were compared at 12 weeks. Pullout strength and bone-implant contact was quantified.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 22 - 22
1 Aug 2012
Coathup M Lo W Edwards T Blunn G
Full Access

Introduction

This study investigated the binding agent Calcium/Sodium Alginate fibre gel and the addition of autogenic bone marrow aspirate (BMA) on bone growth into a porous HA scaffold implanted in an ovine femoral condyle critical-sized defect. Our hypothesis was that Alginate fibre gel would have no negative effect on bone formation and osteoconduction within the scaffold and that BMA would augment the incorporation of the graft with the surrounding bone at 6 and 12 weeks post implantation.

Methods

24, 8mm x 15mm defects were filled with either porous HA granules, porous HA granules + Alginate fibre gel (HA putty) or porous HA granules + Alginate fibre gel + BMA (HA putty +BMA) and remained in vivo for 6 and 12 weeks (n=4). 1ml of bone marrow aspirate per cm3 of graft was used. Image analysis quantified bone apposition rates, bone ingrowth, bone-implant contact and quantity of graft. Mann Whitney U tests were used for statistical analysis where p<0.05 was considered significant.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 27 - 27
1 Aug 2012
Reissis Y Garcia E Hua J Blunn G
Full Access

Impaction allograft using cement is commonly used in revision surgery for filling bone defects and provides a load bearing interface. However, the variable regeneration of new bone within the defect makes clinical results inconsistent. Previous studies showed that addition of mesenchymal stem cells (MSCs) seeded on allograft can enhance bone formation in the defect site. The purpose of this study is to test the hypothesis that heat generated during cement polymerization will not affect viability of the human MSCs.

The temperatures and durations were taken from previous studies that recorded the maximum temperature generated at the bone-cement interface. Temperatures of below 30 degrees Celsius to over 70 degrees Celsius have been detected and the duration of elevated temperature varies from 30 seconds to 5 minutes. In this study the viability of MSCs cultured at different temperatures was assessed. Ten groups were studied with three repeats (Table 1). A control group in which cells were cultures normally was used.

Culture medium was heated to the required temperature and added to the cells for the required duration. The metabolism of MSCs was measured using the alamar Blue assay, cell viability was analysed using Trypan Blue and cell apoptosis and necrosis were tested using Annexin V and Propidium Iodide staining.

Results showed that cell metabolism was not affected with temperatures up to 48 degrees Celsius for periods of 150s, while cells in the 58 degrees Celsius group eventually died (Fig. 1). Similar results were shown in Trypan Blue analysis (Fig. 2). When comparing the group of cells heated to 48 degrees Celsius for 150s with the control group for apoptosis and necrosis, no significant difference was observed.

The study suggests that human MSCs seeded to allograft can be exposed to temperatures up to 48 degrees Celsius for 150s, which covers many of the situations when cement is used. This indicates that the addition of mesenchymal stem cells to cemented impaction grafting can be carried out without detrimental effects on the cells and that this may increase osteointegration.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 10 - 10
1 Aug 2012
Pendegrass C Fontaine C Blunn G
Full Access

Infection is the primary failure modality for transcutaneous implants because the skin breach provides a route for pathogens to enter the body. Intraosseous transcutaneous amputation prostheses (ITAP) are being developed to overcome this problem by creating a seal at the skin-implant interface to prevent bacterial invasion. Oral gingival epithelial cell adhesion creates an infection free seal around dental implants; however this has yet to be demonstrated outside the oral environment. All epithelial cells attach via hemidesmosomes (HD) and focal adhesions (FA) and their expression is an indicator of adhesion efficiency. The aim of this study was to compare epidermal keratinocyte with oral gingival epithelial cell adhesion on titanium alloy in vitro to determine whether these two cell types differ in their speed and strength of adhesion. It was hypothesised that oral gingival epithelial cells attach to titanium alloy earlier than epidermal keratinocytes; with greater expression of hemidesmosomes and focal adhesions.

Human oral gingival epithelial cell (HGEP) and primary human epidermal keratinocyte (HPEK) adhesion to titanium alloy, was assessed at 4, 24, 48 and 72 hrs. Adhesion was measured by the number of FAs per unit cell area and expression of HDs using a semi-quantitative scale.

At 4 and 24hrs, there was a significant increase in vinculin marker expression per unit cell area of 4.3 and 4.7 times in HGEP compared with HPEK (p=0.000). At 48 and 72hrs there were no significant differences.

HD expression was significantly greater in HGEP at 4 and 24hrs (p=0.002) compared with HPEK. Up-regulation of HD expression in HPEK lagged that of HGEP until 48hrs, after which no significant differences were observed.

This study has demonstrated that oral gingival cells up-regulate both focal adhesion and hemidesmosome expression at earlier time points compared with epidermal keratinocytes. Expression of hemidesmosomes lags that of focal adhesions, suggesting that focal adhesion formation is a prerequisite for hemidesmosome assembly. We postulate that early attachment of oral gingival epithelial cells to dental implant biomaterials may be responsible for the formation of an infection-free seal.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXX | Pages 17 - 17
1 Jul 2012
Picardo N Blunn G Shekkeris A Aston W Pollock R Meswania J Cannon S Skinner J Briggs T
Full Access

Introduction

Following bone tumour resection, lower limb reconstruction results in leg-length discrepancy in skeletally immature patients. Previously, minimally invasive endoprostheses have been associated with a high risk of complications including joint stiffness, nerve injury, aseptic loosening and infection. The purpose of this study was to examine the outcome of the Stanmore non-invasive extendible endoprostheses used in our institution between 2002 and 2009 and compare them with implants used in the past.

Methods

Fifty-five children with a mean age of 11.4 years (5 to 16) underwent limb reconstruction with thirty-three distal femoral, two total femoral, eight proximal femoral and twelve proximal tibial implants. Forty-six endoprostheses were lengthened in clinic without anaesthesia using the principle of electromagnetic induction. Patients were assessed using the Musculoskeletal Tumour Society Score (MSTS) and the Toronto Extremity Salvage Score (TESS).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXX | Pages 6 - 6
1 Jul 2012
Shekkeris A Pollock R Aston W Cannon S Blunn G Skinner J Briggs T
Full Access

Introduction

Primary bone tumours of the distal radius are rare, while it remains the third commonest site for primary lesions and recurrences of Giant Cell Tumours (GCT). The functional demands on the hand make reconstruction of the wrist joint following the excision of distal radius, particularly challenging.

Methods

A single-centre retrospective study, reporting the functional and oncological outcomes of six patients (4 males, 2 females - mean age of 53 (22 to 79)) who underwent a custom-made endoprosthetic replacement of the distal radius with arthrodesis at our institution, during 1999 - 2010. Five patients were diagnosed with primary bone sarcoma of the distal radius (4 GCTs, 1 osteosarcoma) and another had a metastatic lesion from a primary renal cell carcinoma. The diagnosis was confirmed by needle biopsy in all cases.

We assessed the patients' functional outcomes using the Musculoskeletal Tumour Society scoring system (MSTS) and the Toronto Extremity Salvage Score (TESS).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 76 - 76
1 Jun 2012
Gokaraju K Miles J Blunn G Unwin P Pollock R Skinner J Tillman R Jeys L Abudi A Briggs T
Full Access

Non-invasive expandable prostheses for limb salvage tumour surgery were first used in 2002. These implants allow ongoing lengthening of the operated limb to maintain limb-length equality and function while avoiding unnecessary repeat surgeries and the phenomenon of anniversary operations.

A large series of skeletally immature patients have been treated with these implants at the two leading orthopaedic oncology centres in England (Royal National Orthopaedic Hospital, Stanmore, and Royal Orthopaedic Hospital, Birmingham).

An up to date review of these patients has been made, documenting the relevant diagnoses, sites of tumour and types of implant used. 87 patients were assessed, with an age range of 5 to 17 years and follow up range of up to 88 months.

Primary diagnosis was osteosarcoma, followed by Ewing's sarcoma. We implanted distal femoral, proximal femoral, total femoral and proximal tibial prostheses. All implants involving the knee joint used a rotating hinge knee. 6 implants reached maximum length and were revised. 8 implants had issues with lengthening but only 4 of these were identified as being due to failure of the lengthening mechanism and were revised successfully. Deep infection was limited to 5% of patients.

Overall satisfaction was high with the patients avoiding operative lengthening and tolerating the non-invasive lengthenings well. Combined with satisfactory survivorship and functional outcome, we commend its use in the immature population of long bone tumour cases.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 251 - 251
1 Jun 2012
Unwin P Pickford M Shawcross J Blunn G Cannon S Grimer R
Full Access

Infected mega-endoprostheses are difficult to treat with systemic antibiotics due to encapsulation of the implant by fibrous tissue, formation of biofilms and antibiotic resistant bacteria. Modifying the implant surface by incorporating a bactericidal agent may reduce infection. Infection rates are typically in the range of 8% to 30%. This study describes a novel process method of “stitching-in” ionic silver into the implant surface, in vitro testing and its early clinical usage.

A novel process has been developed to “stitch in” ionic silver into the upper surface of titanium alloy (Ti6Al4V). The process produces a modification by anodisation of the titanium alloy in dilute phosphoric acid, followed by absorption of silver from an aqueous solution. The engineered surface modification is therefore integral with the substrate and loaded with silver by an ion exchange reaction. Using this technique the maximum inventory of silver for typical a mega-prosthesis is 6mg and this is greater than 300 times lower than the No Observable Adverse Affects Level (NOAEL). Scanning electron microscopy revealed that the silver was concentrated in pits and forming reservoirs of ionic silver exposed to the body tissues.

Laboratory-based studies focusing on the safety and efficacy of silver as a bactericidal agent have included investigation into cytotoxicity using fibroblast and osteoblast cell lines, the impact of silver in reducing corrosion and laboratory testing to establish if the modified surface has an effect on the wear and mechanical characteristics. A range of fatigue, static, tensile pull off tests were performed. The silver elution profiles for both silver loaded and HA coated over a silver loaded surface have been examined. Histological studies were also performed to examine the impact of the silver on osseointegration.

The in vitro results confirm that silver is an effective antimicrobial agent. The mechanical characterization studies have identified that the surface treatment has no or minimal impact on the implant surface. Early results of the elution studies are encouraging showing that the HA coating of a silver loaded surface does not “seal” in the silver.

To date (May 10) 147 silver treated mega-prostheses have been implanted since March 2006. The majority of implants were distal femoral (29%), proximal tibial (23%) or hemiplevic (10%). The most common indication was revision of a failed limb salvage reconstruction (58%), with the dominant cause of failure being infection. The next most common indication was bone tumour (31%) and the large majority were used in the high risk skeletal locations of the tibia (44%) and the pelvis (27%). Early clinical results are encouraging indicating a significant reduction in the incidence of infection.

Three implants have been retrieved. An analysis of a proximal humeral replacement that had been in situ for 6 mths identified that there was 10-20% remaining on the implant surface.

This novel process of “stitching-in” silver appears to be a safe and effective surface treatment in helping to control infections of mega-prostheses. This technology has the potential to be transferred to other arthroplasty joints.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 131 - 131
1 Jun 2012
Macmull S Bartlett W Miles J Blunn G Pollock R Carrington R Skinner J Cannon S Briggs T
Full Access

Polymethyl methacrylate spacers are commonly used during staged revision knee arthroplasty for infection. In cases with extensive bone loss and ligament instability, such spacers may not preserve limb length, joint stability and motion.

We report a retrospective case series of 19 consecutive patients using a custom-made cobalt chrome hinged spacer with antibiotic-loaded cement. The “SMILES spacer” was used at first-stage revision knee arthroplasty for chronic infection associated with a significant bone loss due to failed revision total knee replacement in 11 patients (58%), tumour endoprosthesis in four patients (21%), primary knee replacement in two patients (11%) and infected metalwork following fracture or osteotomy in a further two patients (11%). Mean follow-up was 38 months (range 24–70). In 12 (63%) patients, infection was eradicated, three patients (16%) had persistent infection and four (21%) developed further infection after initially successful second-stage surgery. Above knee amputation for persistent infection was performed in two patients.

In this particularly difficult to treat population, the SMILES spacer two-stage technique has demonstrated encouraging results and presents an attractive alternative to arthrodesis or amputation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXII | Pages 27 - 27
1 May 2012
Oddy M Konan S Meswania J Blunn G Madhav R
Full Access

Medial Displacement Osteotomy (MDO) of the os calcis is used to correct the hind foot valgus in a flat foot deformity. Screw fixation is commonly used although contemporary locking plate systems are now available. This study tested the hypothesis that a 10mm MDO would support a higher load to failure with a locked step plate than with a single cannulated screw.

Materials and Methods

Eight pairs of embalmed cadaveric limbs harvested 10cm below the knee joint were axially loaded using a mechanical testing rig. Two pairs served as non-operated controls loaded to 4500N. The remaining limbs in pairs underwent a 10mm MDO of the os calcis and were stabilised with a locked step plate or a 7mm cannulated compression screw. One pair was loaded to 1600N (twice body weight) as a pilot study and the remaining 5 pairs were loaded to failure up to 4500N. The force-displacement curve and maximum force were correlated with observations of the mechanism of failure.

Results

In one pair of control limbs, failure occurred with fractures through both os calcis bones, whilst the other pair did not undergo mechanical failure to 4500N. In the pilot osteotomy, the plate did not fail whilst loss of fixation with the screw was observed below 1600N. For the remaining five pairs, the median (with 95% Confidence Intervals) of the maximum force under load to failure were 1778.81N (1099.39 – 2311.66) and 826.13N (287.52 – 1606.67) for the plate and screw respectively (Wilcoxon Signed Rank test p=0.043). In those with screw fixation loaded to 4500N, the tuberosity fragment consistently failed by rotation and angulation into varus.