header advert
Results 21 - 30 of 30
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 289 - 290
1 May 2009
Brockett C Williams S Isaac G Jin Z Fisher J
Full Access

Large diameter metal-on-metal (MOM) bearings are becoming increasingly popular for young, active patients. Clearance is a particularly important consideration for designing MOM implants, considering historical experience of equatorial contact and high frictional torque. Lubrication theory predicts increasing the clearance will result in diminished lubrication, resulting in increased friction and wear. Clinical cases of transient squeaking in patients with resurfacing bearings have been noted in recent years, with some reporting an incidence of up to 10% between 6 months and 2 years post-implantation. This study aimed to investigate the impact of increasing clearance on the lubrication, friction and squeaking of a large diameter metal-on-metal resurfacing bearing through frictional studies.

Clinical-grade MOM implants of 55mm diameter and 100μm diametric clearance, and custom-made, 55mm bearings with diametric clearances of approximately 50μm and 200μm (DePuy International Ltd) were tested in a friction simulator. Components were inverted with a flexion-extension of ±25o applied to the head and lubricated with 25% and 100% newborn bovine serum. A peak load of 2kN, with swing-phase loads of 25N, 100N and 300N were applied.

Sound data was recorded during each friction test using a MP3 recorder and pre-amplifier. A microphone was set up at a distance of 50mm from the implant, and data recorded over a minimum of 10 seconds where sound was generated. Sound data was assessed through narrow band analysis on Frequency Master software (Cirrus Research, UK).

Lubrication was assessed by directly measuring the separation between the head and cup during the test cycle by ultrasonic methods (Tribosonics, UK). An ultrasound sensor was bonded to the back of the cup and reflection measurements were taken during the friction tests with a sampling rate of 100Hz. Using equations which related reflection coefficient to lubricant properties and thickness, values for the film thickness were calculated.

The surface replacement with the largest clearance yielded the highest friction factor for each test condition. The difference between the large clearance bearing and the smaller clearance samples was statistically significant in 25% bovine serum, the more clinically relevant lubricant (ANOVA, p< 0.05). The 50μm clearance group yielded similar results to the 100μm clearance bearing, although a slight increase in friction was observed.

Squeaking occurred during every test in the large clearance group. There was a reduced incidence of squeaking in the smaller clearances, with the lowest incidence observed in the 100μm clearance group.

The smallest separation of the head and cup was observed within the large clearance bearings. The best lubrication condition measured ultrasonically was observed within the 100μm clearance bearing. There appeared to be good correlation between friction, lubrication and the incidence of squeaking. This study suggests a large diametric clearance results in reduced lubrication, increased friction and an increased incidence of squeaking. However, there is a minimum diametric clearance that can be tolerated, as clearance must accommodate the manufacturing tolerance.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 294 - 295
1 May 2009
Udofia I McCann L Graindorge S Jin Z Fisher J
Full Access

Clinical reports of surgical intervention options, such as spacers or hemi-arthroplasties, particularly for treatment of young arthritic patients, have been poor [1]. Knowledge of the tribology of the cartilage-prosthesis interaction of these devices would potentially provide an insight to the reasons for the premature failure of these devices and the development of more appropriate intervention treatment solutions for arthritic patients. Frictional studies of articular cartilage have been reported, using simple pin-on-plate geometric configurations [2], which do not accurately represent the geometric and stress conditions in the natural joint. A more representative model, based on the medial compartment of the knee joint has been developed in the Part 1 of this study [3] for the pre-clinical tribological testing the natural joint and their related arthroplasty devices. Bearing geometry is an important consideration in limiting wear, as shown in congruous meniscal knee replacement, which exhibited lower wear rates than incongruous designs [4,5]. The aim of this study was to use a unicompartmental hemi-arthroplasty model to examine the effect of tibial conformity and stress on the friction and wear of articular cartilage.

Experiments were conducted in an anatomic pendulum friction simulator (SimSol, UK) using the medial femoral condyle of a bovine knee joint articulating against two conforming stainless steel (316L) tibial plates (R=50mm and 100mm). A simplified physiologic knee loading profile was applied represent both low loading and much higher physiological loading conditions, with peak load between 259N – 1.5kN). Tests were conducted in 25% bovine serum and run for 3600 and 300 cycles under the low and high loading conditions respectively. The motion was cycled at 1Hz with amplitude between −10°–13.1°. Cartilage wear was assessed qualitatively from surface roughness measurements using a surface profile using a surface profilometer (Taylor Hobson, UK). The friction and wear of cartilage articulating against the conforming tibial plates were compared to a positive control flat tibial plate model [3]. The conforming plate models were found to produce significantly lower cartilage friction and surface damage (μ=0.022–0.035, Ra=0.136–0.145μm) than the flat plate model (μ=0.078, Ra=2.70μm). No damage on the cartilage surface was observed under low loads, however, under higher, more physiological loading cartilage friction increased (μ=0.08) in the conforming plate model, with a significant surface damage. An anatomic unicompartmental knee joint model has been developed to successfully examine the effect of counterface conformity on cartilage friction and wear for pre-clinical testing of a hemi-arthroplasty device. Counterface conformity was shown to significantly reduce cartilage friction and wear. This was attributed to the increased surface area and reduced stresses experienced in comparison to an incongruent bearing articulation.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 380 - 380
1 Jul 2008
Udofia I Liu F Jin Z Roberts P Grigoris P
Full Access

Metal-on-metal hip resurfacing arthroplasty is a conservative procedure that is becoming an increasingly popular option for young arthritic patients most likely to undergo a secondary procedure in their lifetime. The stability of the acetabular component is of particular concern in these patients who show an increased risk of failure of the cemented acetabular cups in conventional total hip replacements. The purpose of this study was to examine the initial stability of a cementless interference press-fit acetabular cup used in hip resurfacing arthroplasty and implanted into ‘normal’ versus poor quality bone. Also examined was the effect of the press-fit procedure on the contact mechanics at the cup-bone interface and between the cup and femoral head.

A finite element (FE) model of the DUROM resurfacing (Zimmer GmbH) was created and implanted anatomically into the hip joint, which was loaded physiologically through muscle and subtrochanteric forces.

The FE models included: a line-to-line, 1mm and 2mm interference press-fit cup. Also considered were two FE models based on the 1mm press-fit cups, in which the material properties of the cancellous and cortical bone tissues were reduced by 2 and 4 times, to represent a reduction in bone quality as seen with age or disease.

Increasing the cup-bone interference resulted in a sig-nificant reduction in implant micromotion. All the pressfit models showed predicted cup-bone micromotion below 50 micrometers. This would ensure adequate initial stability and encourage secondary fixation through bone in-growth. The predicted acetabular stresses were found to increase with the amount of press-fit, however, there was no suggestion of a fracture. These stresses would further contribute to securing the cup.

Reducing the bone quality showed an increase in the predicted micromotion and increased bone strain. Micromotion was below 50 micrometers, but the predicted compressive bone stresses, necessary for additional implant fixation, was reduced. This implied that poor quality bone would provide unsuitable support medium for the implant. The bearing surface contact mechanics were little affected by the amount of pressfitting.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 387 - 387
1 Oct 2006
Liu F Jin Z Rieker C Hirt F Roberts P Grigoris P
Full Access

Introduction: Hip simulator and clinical retrieval studies have shown that metal-on-metal (MOM) hip implants commonly have biphasic wear. An initial high wear or running-in phase is generally followed by a low wear or steady-state phase. A number of hypotheses have been put forward to explain this biphasic phenomenon, including polishing of the metallic bearing surfaces and increasing conformity between the two articulating surfaces. The purpose of the present study was to compare the wear and lubrication of MOM hip implants between the running-in and steady-state periods.

Materials and Methods: A standard 28mm MetasulTM MOM bearing (Centerpulse Orthopedics, a Zimmer Company, Winterthur, Switzerland) was investigated. The wear testing was carried out using a 6-station AMTI hip simulator in the presence of 33% bovine serum and 67% Ringer solution (PH 7.2). The bearing surfaces of both the femoral and acetabular components were measured using a coordinate measurement machine at different stages of wear testing. The dimensional changes of the bearing surfaces due to wear were directly incorporated into the elastohydrodynamic lubrication analysis using an in-house developed code.

Results: The initial running-in period occurred during the first 1 million cycles, and little wear was observed subsequently up to 5 millions cycles. The maximum total wear depth was measured to be around 13 μm at 1 million cycles. The predicted average lubricant film thickness between the two articulating surfaces was increased from 0.024μm at the beginning, to 0.09μm at the end of the first 1 million cycles. For a given composite surface roughness of 0.03μm often quoted for the metallic bearing surfaces, such an increase in the lubricant film thickness represents a transition from a mixed to a fluid film lubrication regime.

Discussion: A large improvement in lubrication was predicted as a direct result of the running-in wear of the bearing surfaces. This was mainly due to the increased conformity between the two articulating surfaces and the decreased diametrical clearance. It was particularly noted that the improvement in lubrication after 1 million cycles was so significant that continuous fluid film lubrication was possible, leading to extremely low wear for up to 5 million cycles, and only material fatigue and start-up and stopping for wear measurements could cause a further increase in wear.

It is possible in theory to optimise the geometry of the metallic bearing surfaces, based on the worn components, to minimise the running-in wear. However, such an improvement in lubrication cannot be readily achieved because of difficulties in surgical techniques and position of the components.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 383 - 383
1 Oct 2006
Liu F Jin Z Rieker C Hirt F Roberts P Grigoris P
Full Access

Introduction: Laboratory simulator and clinical retrieval studies of metal-on-metal (MOM) total hip replacements have shown that the metallic alloy, the femoral head radius, the clearance between the acetabular cup and femoral head and the cup thickness can influence the contact mechanics, the lubrication and the wear of the articulation. MOM hip resurfacing procedures have received significant attention recently. The purpose of the present study was to compare the contact mechanics between a MOM hip resurfacing implant and a MOM total hip replacement under identical conditions.

Materials and Methods: A 50mm diameter DUROMTM MOM hip resurfacing prosthesis and a 28mm diameter MetasulTM MOM bearing system (Centerpulse Orthopedics, a Zimmer Company, Winterthur, Switzerland) were investigated. All implants were manufactured from wrought-forged high carbon cobalt chromium alloy (Pro-tasul 21WFTM). The diameters of the DUROMTM femoral head and acetabular cup were 50mm and 50.145mm respectively, and the corresponding wall thickness of the acetabular component was around 4mm. The diameters of the MetasulTM femoral head and acetabular cup were 28mm and 28.12mm. Three-dimensional finite element models were created to simulate the contact between the bearing surfaces of both the femoral head and the acetabular cup fixed to a three dimensional anatomically positioned pelvic and femoral bone consisting of both cortical (with 1mm thickness) and cancellous regions. The load applied to both models was 3200N.

Results: The maximum contact pressure at the bearing surfaces was found to be around 22MPa for the DUROMTM and the contact area between the femoral and acetabular components was predicted to be 237mm2. For the MetasulTM bearing under identical conditions, the maximum contact pressure and the contact area predicted were approximately 47MPa and 74mm2 respectively.

Discussion: A large reduction in the contact pressure, which should improve overall tribological performances, was noted for the DUROMTM hip resurfacing prosthesis, as compared with the MetasulTM bearing. The main reasons for this reduction were the large diameter of the articulation and the small acetabular cup thickness of the DUROMTM system. In contrast, the MetasulTM bearing has a smaller head diameter, and relies on a polyethylene backing underneath the metallic cup inlay to reduce the contact pressure at the articulating surfaces.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 406 - 406
1 Oct 2006
Katta J Bell C Carrick L Ingham E Aggeli A Boden N Waigh T Jin Z Fisher J
Full Access

Viscosupplementation is the current treatment modality for early stage arthritis and in some cases for delaying joint replacement procedures. Rheological properties similar to that of synovial fluid and high molecular weight have been recognized as the determining factors in hyaluronic acids (HA) therapeutic and analgesic value (1). In this study, the self assembly of peptides into beta-sheet structures in solution (24) is explored to develop novel biocompatible injectable joint lubricants. These peptides can be delivered into the joint easily in their low viscosity monomer form, while they are designed to self-assemble in situ under physiological conditions. Four different peptides P11-4, P11-8, P11-9, and P11-12 were designed based on the chemical motif of hyaluronic acid and were found to self-assemble into nematic fluids and gels under physiological conditions. Friction characteristics of these peptides as lubricants were evaluated in a bovine cartilage on cartilage model using a simple pin on plate geometry and under various sliding conditions. Friction tests were carried out using both healthy and damaged bovine cartilage samples, to study the therapeutic effect of these peptides as lubricants. Further, a rheometer with cone-on-plate configuration was used to study these peptides in shear viscosity and oscillatory shear modes to determine their viscoelastic properties. Both the friction properties and rheological behaviour of the peptides were compared to that of a commercially available hyaluronic acid preparation that was tested along with the peptides. Peptide P11-9 was found to have very similar viscoelastic properties to that of HA, and was also the most effective in friction level reduction among the four peptides tested. When compared to HA, P11-9 showed slightly better friction characteristics in all the healthy cartilage models, while HA was the best lubricant in damaged cartilage models when compared to P11-9 and other peptides. The results indicate that these novel self assembling peptides can be developed as a new generation of synthetic viscosupplements for the treatment of early stage arthritis.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 41 - 41
1 Mar 2006
Sedel L Jin Z Rieker C Grigoris P Roberts P
Full Access

Since 1977 we did implant all alumina (Al2O3) bearings total hip prostheses. A lot of data were documented concerning tissue reaction, in vivo wear behaviour, fractures, and clinical outcome. Ceramic materials retrieved at revision were analysed. In some cases, wear was as low as a few microns for a 15-year period in use. This is two thousand times less than a regular metal on polyethylene sliding couple. and 100 times less than a metal on metal prosthesis. Fracture mechanism is related to crack propagation into the material. During the first period, the fracture rate was in the range of 2%; it then dropped to less than 0.1 %. Few fractures could not be explained by technical or design mistakes. Clinical outcome: More than 4000 total hips in selected young and /or active patients were implanted. In a recently reported series of consecutive patients operated by P.Boutin during the year 1980, 118 hips in 106 patients were included. Mean age was 62 years. At the twenty-year follow-up evaluation, forty-five patients (fifty-one hips) were still alive and had not been revised, twenty-five patients (twenty-five hips) had undergone revision of either or both components, twenty-seven patients (thirty hips) had died from unrelated causes, and nine patients (twelve hips) were lost to follow-up. The mean Merle d’Aubigné hip score was 16.2 ± 1.8 at the latest follow-up. Survival of the cup at twenty years with revision for any reason as the end-point was 85.6 percent for cementless cups versus 61.2 % for cemented cups, respectively. Survival of the stem at twenty years with revision for any reason as the end-point was 84.9 % for cementless stems versus 87.3% for cemented stems. Wear of the prosthetic components was undetectable on plain radiographs. No fracture of the alumina socket or head was recorded. Another study concerned a more recent design of the socket which consisted in a metal back titanium alloy shell covered with a pure titanium mesh with an alumina liner. The nine year survival rate was 98.4% with revision for aseptic loosening as the end point. Conclusion This alumina on alumina bearing provides interesting results without any physical limitation specially in young and active patients.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 41 - 41
1 Mar 2006
Liu F Jin Z Rieker C Grigoris P Roberts P
Full Access

Metal-on-metal (MOM) bearings for artificial hip joints have attracted significant attention recently as a way of reducing wear and consequently wear particle induced periprosthetic osteolysis, which is the major cause of failure. One of the most widely used MOM total hip implants is the Metasul system (Zimmer GmbH), in which a thick polyethylene backing is used underneath the metallic inlay. The purpose of this study was to investigate the effect of the polyethylene backing on the transient lubrication under dynamic loading and velocity conditions representative of walking. A 28mm diameter Metasul bearing was analysed, and the predicted lubricant film thickness was compared with that for an all metallic cup. The predicted transient lubricant film thickness in the Metasul system was found to be significantly greater than the corresponding prediction from the all metal cup. Therefore it was concluded that the polyethylene backing may play an important role in the lubrication and overall tribological performance of the Metasul bearing system with a diameter of 28mm.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 361 - 361
1 Mar 2004
Liu F Jin Z Grigoris P Hirt F Rieker C
Full Access

Aims: The purpose of the present study was to investigate the contact mechanics at the articulating surfaces in metal-on-metal hip implants. Methods: A 28mm diameter Metasul (from Sulzer Orthopedics Ltd.) was analysed in the present study. Both the femoral head and the acetabular cup were manufactured from matching cobalt chromium alloy. The cobalt chromium alloy acetabular inlay was thermo-mechanically bonded to an ultra high molecular weight polyethylene (UHMWPE) backing, which was in turn inserted into a titanium shell with a snap-þt for cementless þxation. The radial clearance between the femoral head and the acetabular cup was 60μm. Finite element method (ABAQUS 6.2) was used to model the contact at the articulating surfaces between the femoral head and the acetabular cup, under a load of 3.2kN. Results: The average contact pressure at the bearing surfaces was found to be about 45MPa. This was considerably lower than 63MPa if the UHMWPE backing was replaced by cobalt chromium alloy. It was also interesting to compare the present result with the use of a larger femoral head or a reduced clearance. In order to match the average contact pressure of 45MPa, it was found to be necessary to increase the femoral head radius to 18mm for a given radial clearance of 60μm or to decrease the radial clearance to 35μm for a þxed femoral head radius of 14mm. Conclusions: The use of an UHMWPE backing underneath a cobalt chromium alloy cup signiþcantly reduces the contact stresses experienced at the articulating surfaces in metal-in-metal hip implants.