header advert
Results 51 - 78 of 78
Results per page:
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 392 - 392
1 Jul 2008
Gardner L Varbiro G Williams G Trividi J Roberts S
Full Access

Cells of the intervertebral disc exist in an unusual environment compared to those of other tissues. Within the disc there are low levels of nutrients available, low oxygen levels and it is an acidic environment due to high lactate levels. Apoptosis (programmed or controlled cell death) has been reported in intervertebral discs, as well as necrosis (uncontrolled cell death). This study has focused on examining the sensitivity of nucleus pulpo-sus (NP) cells to several stimuli, in comparison to two other cells types.

Ultra violet (UV) irradiation, serum starvation (with no foetal calf serum) and treatment with 2mM hydrogen peroxide were used to induce apoptosis in cultured bovine NP cells, HeLa (cancer cell line) and 293T cells (human embryo kidney derived) cells. Apoptosis was identified by nuclear morphology following staining with fluorescent Hoechst 33342 dye and propidium iodide; the incidence was measured at 24, 48 and 72 hours. Untreated controls were used for each treatment and at each time point.

The incidence of apoptosis increased with time for all treatments. After 72 hours, UV treatment produced the highest levels of apoptosis with levels of apoptosis occurring in the order of HeLa (94%) > NP cells (29%) > 293T cells (15%). Treatment with hydrogen peroxide and serum starvation induced apoptosis at lower levels in all three cell types (maximum of 30%). Serum starvation induced apoptosis in only 10% of NP cells at 72 hours, compared to 20% in HeLa cells. None of the controls contained apoptotic cells.

NP cells are stimulated to apoptose in response to UV irradiation, hydrogen peroxide and serum starvation. However, levels of apoptosis are much lower after UV treatment in comparison to HeLa cells (3 times lower), suggesting that they may have a protective mechanism to this apoptotic stimulus, compared to HeLa cells. The low levels of apoptosis observed in NP cells with serum starvation may be due to the low nutrient environment that they exist in normally.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 407 - 407
1 Oct 2006
Bhosale A Harrison P Ashton B Menage J Myint P Roberts S McCall I Richardson J
Full Access

Introduction: Before proceeding to long-term studies, we studied early clinical results of combined Autologous Chondrocyte Implantation (ACI) and Allogenic Meniscus Transplantation (AMT). Meniscus deficient knees develop early osteo-arthritis (OA) of the knee joint. Autologous Cartilage Implantation (ACI) is contraindicated in case of meniscus deficient knees. And on contrary the Allogenic Meniscus Transplantation (AMT) is contraindicated in cartilage defects in the knee joint. But a combination of the two procedures for bone on bone OA might be a solution for this problem. This was the main purpose of our study.

Methods: We studied a consecutive series of eight patients (7 males and 1 female), with an average age= 43 years (29–58), presenting with painful secondary arthritis, due to premature loss of meniscus and chondral defect/s. Median size of the femoral defects was 8.16 cm2 and of the tibial side 2.69 cm2 All patients were treated with a combination of Autologous Chondrocyte implantation (ACI) and Allogenic Meniscus Transplantation (AMT). Chondral defects were covered with periosteum/ Chondroguide membrane, secured in place with in-vitro cultured autologous chondrocytes injected underneath the path. Meniscus placed as load-bearing washer on the surface of ACI of tibia. ACI rehabilitation protocol followed post-operatively. Assessment at the end of one year was done with self-assessed Lysholm score, histology and the MRI scan.

Results: Mean pre-operaive Lysholm score was 49 (17–75). This increased to a mean of 66 (26–87) at 1 year, an average increase of 16.4 points. Average one-year satisfaction score was 3 and they were back to all active life style. Five out of eight patients showed significant functional improvement at last post-operative follow-up (2 to 6 years; mean of 3.2 years). Complications were aseptic synovitis in 3 cases. Three failures were noted showig persistant pain and swelling in one, rupture of meniscus in second and third patient had a knee replacement. Arthroscopy at 1 year showed a stable meniscus with all healed peripheral margins in all except in one case with some thinning with no evidence of rejection. Histology of meniscus showed a fibrocartilage well populated with viable cells and the peripheral zone was well vascularised and integrated with capsule. Biopsy of ACI site was predominantly of fibrocartilage with good basal integration with subchondral bone. On MRI scan, allogenic meniscus was well integrated with capsule along the line of repair, showing foci of variable signal intensities within the meniscus. There was no evidence of meniscal subluxation in all but one case showing mild extrusion. ACI graft site showed a varied appearance, with 3 grafts showing focal grade 3to 4 changes.

Conclusion: Seven out of eight patients improved post-operatively at one year, in terms of pain relief and increased activity. It’s possible to combine these two techniques together. Short-term outcomes are satisfactory. We could not find any deleterious effects of combining these two techniques together. So we conclude that, this might act as a one step towards a biological knee replacement.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 402 - 402
1 Oct 2006
Bhosale A Richardson J Kuiper J Harrison P Ashton B McCall I Roberts S Robinson E
Full Access

Background: Articular cartilage injuries are very common. Small defects don’t heal on their own and large defects can’t regenerate new cartilage. This would largely be due to the fact that chondrocytes are embedded in a firm and tough matrix and hence can’t migrate to the defect site to regenerate a new cartilage tissue. So ultimate fate is patient getting early osteoarthritis. Cartilage defects in the knee may be symptomatic and cause pain, swelling and catching. There are several different surgical procedures available to treat cartilage injuries, but no method has been judged superior. The ultimate aim of the treatment is restoration of normal knee function by regeneration of hyaline cartilage in the defect, and to achieve a complete integration to the surrounding cartilage and underlying bone. Arthroscopic debridement and lavage may give symptomatic relief for a limited time. Autologous Chondrocytes Implantation (ACI) was first described in 1994. Encouraging primary results were reported, and further research was promoted. Long-term results are encouraging. ACI is being done in Robert Jones & Agnes Hunt orthopaedic Hospital, Oswestry since last 8 years.

Methods: We studied a cohort of first 118 patients who underwent ACI for knee joint in this institute, focussing on their mid-term results. Patients having chondral defects were offered ACI. They all were explained the procedure and informed written consent was obtained. Patients filled in a self-assessed Lysholm forms before the operation. They also underwent pre-operative MRI scan of knee joint. ACI procedure consisted of three stages— Stage I —Arthroscopic harvest biopsy of cartilage and chondrocytes culture in lab. Stage II—Arthrotomy of the knee. The defect edges were freshened, covered by periosteum or chondroguide, which was sutured to the cartilage with 6-0 vicryl. Chondrocytes were injected underneath this patch. Post-op CPM and Physiotherapy. Stage III—1-year arthroscopic surgery. Assessment was done with Lysholm score, MRI scan, histological and arthroscopic analysis. Patients were followed up clinically thereafter with yearly Lysholm scores.

Results: 118 patients with an average age of 35 years (15–59) underwent ACI for knee in last 8 years. 93 patients had single defect, 24 had multiple (> 1) chondral defects, with mean area 4.81 cm2. MRI showed a good integration of defect with surrounding cartilage with varied signal intensities. About 55–56% patients underwent some or other form of trimming, which improved immediate results. However only 50 % of these were symptomatic. Defects on MFC did well as compared to other sites, followed by on trochlea. Defects on patella showed poor results, though the number is less for comparison. Total 79 specimens of 1-year histology showed good healing with formation of fibrocartilage (40), mixed (20) and hyaline (8), fibrous tissue (6), bone in 1 case and inconclusive in 2 cases. Mean pre-op Lysholm score was 50.16. Average score at one year was found to be 69.52.

Conclusion: Results of ACI are encouraging. Patients continued to improve slowly over a period of time, achieving maximum function between one and 2 years post-surgery. Our study showed that there after their scores remained static.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 376 - 377
1 Oct 2006
Patterson A Curtis C Caterson B Edwards D Roberts S van Niekerk L Wade R
Full Access

Introduction: The search continues for ideal markers and methods of monitoring cartilage degeneration. Various cartilage components, whole or fragmented, have been measured in synovial fluids. A common problem in quantitating these markers is often the unknown dilution of synovial fluid which can occur in obtaining the samples. In this study we have used urea (ratio in synovial fluid:serum) as a method to correct for the dilution of synovial fluid, and hence to quantify enzyme levels in patients with a spectrum of cartilage degradation, in addition to identifying aggrecan degradation products, many of them for the first time in such samples.

Methods: Forty synovial fluid samples were obtained from 4 groups of individuals (10 in each):

normal,

grade IV chondral damage,

osteochondral defects or

endstage osteoarthritis (OA) of the knee, categorised by the cartilage appearance at arthroscopy.

Levels of matrix metalloproteinases (MMPs) 2 and 3 and the inhibitor, TIMP 1, were measured in the fluids via ELISA assays. Urea levels were measured in blood and synovial fluids and enzymes and their inhibitors were normalized according to the ratio of serum:SF urea, to account for the dilution factor of the SF (Kraus et al 2001). Western blotting was used to identify the presence of aggrecan components (chondroitin-4-sulphate: 2B6 antibody; C-6-S: 3B3 and C-0-S: 1B5; keratan sulphate: BKS-1; the G1 domain: 7D1; interglobular domain: 6B4) and also enzyme degradation products of MMPs (BC14) and aggrecanases (BC3; BC-13).

Results: MMPs 2 and 3 and TIMP 1 were all significantly increased in the synovial fluids from OA patients compared to normals (P< 0.01, 0.001 and 0.01 respectively) and MMP3 was greater in the grade IV chondral and osteochondral defect groups than the normals (P< 0.01). Western blotting demonstrated fragmented aggrecan components with a range of molecular weights. Aggrecanase activity was seen in the OA and grade IV chondral damage groups but not in the osteochondral or normal groups, whereas MMP activity was seen in all 3 groups showing cartilage damage but not in the normals.

Conclusion: Dilution of the synovial fluid, either due to inflammation or joint lavage, is often a problem in quantitating metabolites and markers in joint cavities. This pilot study of a limited number of samples from well characterized patient groups indicates that using urea concentrations in synovial fluid relative to serum provides a mechanism to overcome this. It confirms elevated enzyme activity, both aggrecanase and MMPs, in the joints of patients with degenerate cartilage, compared to normals.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 373 - 373
1 Oct 2006
Gargiulo B Menage J Evans H Urban J Caterson B Curtis C Eisenstein S Roberts S
Full Access

Introduction: Autologous chondrocyte implantation is routinely used for the repair of articular cartilage defects. A similar method may be employed to treat degenerate intervertebral discs or other connective tissues. A system in which cells could not only be delivered, but also retained would offer advantages compared to ACI. Such a vehicle would also allow a homogenous distribution of cells throughout the defect and enhance nutrient penetration to the seeded cells.

Methods: Bovine nucleus cells were isolated via enzyme digestion and expanded in number to passage 3. The cells were resuspended in 0.8% alginate and loaded into poly vinyl alcohol (PVA) cubes. These constructs were placed into a solution of calcium chloride to ‘gel’ the alginate. Constructs were cultured in DMEM+10% FBS within 15ml conical tubes rotated at 37°C for up to 28 days. Cell distribution/morphology and proliferation were assessed on H& E and Ki-67 stained sections, respectively. The re-expression of a disc cell phenotype was assessed using toluidine blue staining and immunohistochemistry (with antibodies to collagen types I, II, IIA, VI and X, and to the glycosaminoglycans, chondroitin-4- and -6-sulphate and keratan sulphate. RT-PCR was performed using oligonucleotide primers to collagen types I, II and X, aggrecan, link protein, and small leucine-rich PGs.

Results: H& E staining of 10μm-thick cryosections revealed an even distribution of loaded cells throughout the scaffold at day 1 being maintained through to day 28. Toluidine blue staining revealed the presence of GAGs, increasing with time. Ki-67 revealed approximately 5% of cells were proliferating at all time points. Immunohistochemistry demonstrated the production of collagen types I, II, IIA, VI and X and the glycosaminoglycans, chondroitin-4-, -6 and keratan sulphate. RT-PCR results showed mRNA expression of fibromodulin throughout the experiment, lumican at days 14, 21 and 28. Types II and X collagen were present at days 21 and 28.

Conclusions: Combining 0.8% alginate with PVA retained 100% of the seeded cells and allowed an even distribution of cells throughout the scaffold. The immunohistochemistry and RT-PCR demonstrated that the system allowed the bovine nucleus cells to express phenotypic markers expressed by disc cells in vivo. These preliminary results indicate that the PVA/alginate system could act as a suitable delivery device for cells during autologous repair of the intervertebral disc or other connective tissues such as meniscus.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 252 - 252
1 May 2006
Roach R Banim R Rees D Roberts S White S
Full Access

Background: Unfortunately ACL injuries are not uncommon in the young: the majority however occurring after skeletal maturity.

Aim: To perform an internal audit of the demand, methods and results of ACL reconstruction in young patients at a tertiary referral centre.

Methods: Patients were identified through electronic patient records, and all operation notes and follow up records were scrutinised.

Results: 84 cases under 20 years of age (range 14–19) were reviewed from 2000–2004 with a minimum follow-up of 6 months. Over 10% had undergone previous surgery or had documented articular injury. 42 cases required further meniscal surgery at the time of reconstruction: 12% repairs (20/168 menisci), 18% partial menisectomy (30/168). The median time to reconstruction from injury was 9 months (range 1–72). No case was delayed for growth plate maturation. Reconstruction methods were partly surgeon dependent, following adult themes. Occasionally tibial fixation was away from the growth plate with low profile screws and washers. We are only aware of 1 failure during this short follow-up.

Conclusion: We believe that the use of techniques similar to those used on adults is appropriate for adolescents. However the high comorbidity is of some concern, demonstrating that this age range is as challenging as their older counterparts.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 230 - 230
1 Sep 2005
Curtis C Eisenstein S Roberts S Caterson B
Full Access

Introduction: Proteoglycans are found both in the annulus fibrosus and nucleus pulposus of the intervertebral disc and contribute to the hydration of the tissue (aggrecan) and the regulation of matrix assembly (small proteoglycans) [1]. Whilst loss of proteoglycan is the main chemical change in disc degeneration seen in back pain patients, little is known of the events leading to and controlling this loss. In this study the metabolism of the most common proteoglycan, aggrecan, and others including decorin, biglycan, lumican, fibromodulin and versican, together with collagen types I and II were studied in diseased and normal discs.

Methods: Ten discs from patients aged 11–57 years (mean:39±15) with scoliosis (n=1), spondylolisthesis (n=1) and low back pain (n=8), were graded for macroscopic degeneration (Grades 1–4). Three ‘normal’ cadaveric discs from 3 individuals aged 25–27 years (mean 26±1) were also investigated. Disc was either snap-frozen (for RNA isolation) or the proteoglycans extracted with 4M GuHCl. Total RNA was isolated and RT-PCR performed using various oligonucleotide primers. GuHCl-extracted proteoglycan fragments were analysed using Western blotting with a number of antibodies to aggrecan metabolites, collagen metabolites and small leucine-rich proteoglycans.

Results: Intervertebral discs contain a very heterogenous population of proteoglycans demonstrating extensive enzymic degradation, particularly with increasing age and macroscopic degeneration such as is seen in back pain patients. Younger, less degenerate discs contained more biglycan than the older, more degenerate discs. However, the mRNA gene expression analyses demonstrated little cellular activity and potential synthetic response, there was very little expression of particularly in comparison to osteoarthritic cartilage cells which show considerable synthetic capability for all the major matrix components.

Discussion: Our analyses indicate that several biochemical, catabolic and biosynthetic changes occur in disc matrix molecules which are likely to contribute to loss of disc function with ageing and degeneration. The loss of biosynthetic capability of cells is very important in considering the potential of newer therapeutic modalities such as cellular repair and genetic engineering for the treatment of degenerative disc disease.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 384 - 384
1 Sep 2005
Levy O Roberts S Copeland S
Full Access

Introduction: Massive irreparable degenerative rotator cuff tears are amongst the most difficult conditions for treatment in shoulder surgery. These involve usually elderly patients, which present with severely painful and restricted active shoulder movement. These patients have low demand from their shoulders, mainly for pain relief and performing their simple activities of daily living. Major surgery for major tendon transfer will not be advisable in these cases in view of the morbidity involved and the questionable outcome. We suggest a simple non-surgical rehabilitation treatment consisting on anterior deltoid strengthening exercises in the supine position for re-education of the anterior deltoid to compensate for the absent rotator cuff.

Methods: 17 patients with degenerative (non traumatic) Massive irreparable rotator cuff tears were recruited. They were all greater than 70 years of age and of mixed gender. Patients were English speaking, had full mental faculties and gave informed consent. They suffered no other shoulder pathology and were not participants in any other upper limb rehabilitation. All patients complained on severe shoulder pain and severely limited active range of motion with inability to actively elevate the arm to the horizontal. They all had full passive range of motion.

The diagnosis of a Massive irreparable rotator cuff tear was confirmed by diagnostic ultrasound scan. The shoulder function was evaluated using the Constant Score. Patients’ active shoulder ranges of motion were recorded and video-recorded as well. Each participant was taught the initial 6-week of self Deltoid muscle exercise, executed in supine, at least three times a day. They were instructed that when they felt better control on their active shoulder movements to gradually recline up the head of the bed and continue with the same simple exercise. They were reviewed at 6 weeks re-assessed and re-taught the same exercise, with a 2kg weight in their hand. At the 12th week they were reassessed using the constant score, and their active range of motion was video recorded again.

Results: 90% of the participants expressed a significant improvement in their upper limb function already after 6 weeks of treatment. All components of the Constant score (beside the strength) have improved. 90% reported less pain and found general activities of daily living easier to execute and a diminished level of muscle fatigue. 10% of the patients were able to establish a recording of > 1.26kg on the myometer in 90 degrees of abduction. 10% failed to report any benefit.

Discussion and Conclusion: Anterior deltoid strengthening exercises in the supine position for re-education of the anterior deltoid seem to have a significant beneficial effect for restoration of shoulder function and pain relief in the majority of patients with Massive irreparable degenerative rotator cuff tears. Using this simple non-invasive rehabilitation technique helps to re-educate the anterior deltoid to compensate for the absent rotator cuff and restore shoulder function.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 211 - 211
1 Apr 2005
Balain B Eisenstein S Alo G Darby A Pullicino VC Roberts S Jaffray D
Full Access

Problem Chronic disabling pain in the sacrococcygeal region is regarded by clinicians with great dismay because of unpredictability of the treatment outcome. The subject is under- represented in the literature.

Method Thirty eight patients with intractable coccydynia had imaging investigations for the spine other than X-rays. Six of these patients were also investigated by means of sacrococcygeal and intercoccygeal discography. The excised specimen with intact sacrococcygeral joint was sent for histological examination in 22 patients. Patients’ assessment of the benefit of coccygectomy was conducted by telephonic interview.

Results After a mean post surgical follow up of 6.75 years (range 2–16 yrs), results were available for 31 out of 38 patients.

16 patients benefited greatly from the surgery and 6 benefited to some extent, giving an overall good result of 71%. 7 patients had no or little relief from surgery (29%).

Moderate to severe degenerate changes in SC and IC joints on histology were found in 59% of patients. 91.6 % of these patients did well with surgery. Only 60 % of those with mild changes did well.

Discography was possible in five out of six attempted cases. Two were positive and both did well from surgery. Three patients had negative discographies and two of them had a poor result and one had only some relief.

Conclusions Degenerate changes in sacrococcygeal discs give rise to pain. Surgical results are better in those with a severe degree of degenerative change. It is possible to identify these with discography, though a larger study needs to be carried out.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 208 - 208
1 Apr 2005
Flint J Roberts S Eisenstein S Marshall M Mangham D Cartwright A Ashton B Johnson W
Full Access

Background: Growth and development of the intervertebral disc and its adjacent vertebrae is regulated via relative levels of cell proliferation, cell death and hypertrophy, and through extracellular matrix synthesis or degradation [1]. The synthesis of matrix molecules in the growing spine of embryonic rats has been reported in some detail [2,3]. In addition, increased levels of apoptotic disc cell death have been described in normal ageing, disc degeneration and in a murine model of disc spondylosis [4,5]. However, levels of cell proliferation in the developing spine have not been formally investigated.

Methods/Results: BALB/c mice were injected with the thymidine analogue, bromodeoxyuridine (BrdU), at weeks 1–4 postnatally and killed 1 or 24 hours later. The lumbar spines were decalcified and tissue sections immunostained for BrdU-incorporation. The intervertebral disc was fully formed at weeks 1–4, consisting of a notochordal nucleus pulposus, lamellar anulus fibrosus, and cartilaginous endplates between the disc and vertebral growth-plates. BrdU-immunopositivity was most marked in 1 week old mice, particularly in the proliferative zone of the growth-plate and the apophyseal ring. By 4 weeks, few, if any, BrdU-labelled cells were present in the disc, but some positivity remained in the apophyses. There were more paired BrdU-labelled cells at 24 hours than 1 hour post-injection in all regions, indicating likely clonal growth of these cells.

Conclusions: Cell proliferation forms an important part of the growth of the vertebrae, but also features in the early postnatal growth of the murine intervertebral disc. An understanding of how proliferation in these cell populations is regulated will help augment repair and regenerative responses in damaged adult discs or scoliosis.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 36 - 36
1 Mar 2005
Gargiulo B Menage J Curtis C Caterson B Urban J Eisenstein S Roberts S
Full Access

Introduction: Degeneration of the intervertebral disc is characterised by loss of normal cell activity, disc matrix and loss of disc height. There is currently much interest in using cells to effect a biological repair in connective tissues, eg autologous chondrocyte implantation for cartilage repair. Intervertebral discs have a low cell density, with those cells present often being unhealthy and necrotic. Hence, identification of an alternative source of cells for autologous disc repair could be beneficial. Thus we have investigated other types of connective tissue cells to determine if they may be encouraged to undertake a disc cell phenotype.

Materials and Methods: Cells were enzymatically/mechanically extracted from bovine coccygeal discs (annulus and nucleus), skin, bone marrow, periosteum and tendon and the efficiency and proliferation rates assessed. Dermal fibroblasts and bone marrow cells were also grown in a 3D alginate system and compared to disc nucleus pulposus cells for phenotypic expression from 0–28 days. Cell phenotype was assessed via morphology, immunohistochemistry, Western blotting and RT-PCR for mRNA expression.

Results: All cell types could be extracted and proliferated in monolayer, with a flattened and fibroblast-like morphology. Proliferation was slowest for bone marrow cells (4 times slower than nucleus pulposus cells). Cells cultured in alginate became rounded with chondrocyte-like morphology. They remained viable for 4 weeks, but with little replication. Expression or production of proteoglycans, both aggrecan and the small proteoglycans (especially fibromodulin) and collagen types I, II and X was demonstrated for all cell types. There was, however, a difference in the timescale of production between some cell types.

Conclusions: Plasticity of different cell types is well known and the connective tissue cells investigated in this study are capable of responding to the environment in which they are cultured. They can synthesise matrix molecules typically produced by disc cells in vivo and hence warrant further investigation as a potential source of cells for biological repair of the intervertebral disc.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 36 - 36
1 Mar 2005
Johnson W Caterson B Eisenstein S Roberts S
Full Access

Background: Increased nerve growth into degenerated intervertebral discs is associated with discogenic low back pain [1]. Many of these growing nerves are in neo-vascularised areas of the tissue [1,2] and endothelial cells that penetrate the disc express neurotrophic factors [3]. Thus, disc neovascularisation and disc innervation may be closely linked. Whilst disc aggrecan has been found to inhibit sensory nerve growth in vitro [4], the effects of disc aggrecan on endothelial cells are unknown.

Methods/Results: Adapting in vitro assays used previously [4], with HMEC-1 and EAhy-926 cell lines as models of endothelial cell growth, we found that disc aggrecan inhibited endothelial cell migration in a dose-dependent manner. Endothelial cells traversed over collagen substrates until they encountered disc aggrecan substrates (1mg/ml human aggrecan), where they either stopped migrating or, more commonly, changed their direction of movement and aligned to the collagen:aggrecan border (Figure 1). After reaching the aggrecan border, some endothelial cells also migrated away from the disc aggrecan. At lower concentrations of disc aggrecan (0.01mg/ml), no such inhibition of endothelial cell growth was seen.

Conclusions: Loss of aggrecan, increased innervation and neovascularisation are all marked features of disc degeneration [1,2,5]. This study provides evidence that disc aggrecan inhibits endothelial migration and therefore supports a hypothesis that a loss of aggrecan from degenerated discs predisposes the tissue to vascular invasion.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 179 - 183
1 Feb 2005
Whittaker J Smith G Makwana N Roberts S Harrison PE Laing P Richardson JB

Autologous chondrocyte implantation (ACI) has been used most commonly as a treatment for cartilage defects in the knee and there are few studies of its use in other joints. We describe ten patients with an osteochondral lesion of the talus who underwent ACI using cartilage taken from the knee and were prospectively reviewed with a mean follow-up of 23 months. In nine patients the satisfaction score was ‘pleased’ or ‘extremely pleased’, which was sustained at four years. The mean Mazur ankle score increased by 23 points at a mean follow-up of 23 months. The Lysholm knee score returned to the pre-operative level at one year in three patients, with the remaining seven showing a reduction of 15% at 12 months, suggesting donor-site morbidity. Nine patients underwent arthroscopic examination at one year and all were shown to have filled defects and stable cartilage. Biopsies taken from graft sites showed mostly fibrocartilage with some hyaline cartilage. The short-term results of ACI for osteochondral lesions of the talus are good despite some morbidity at the donor site.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 241 - 241
1 Mar 2004
Ashcroft G Roberts S MacKenzie R Clark A Murphy E Gorman D
Full Access

Aims: To examine vibration levels produced by orthopaedic air tools and the prevalence of upper limb symptoms in orthopaedic surgeons. Methods: A preliminary measurement of vibration levels produced by six air powered orthopaedic saws was followed by a national survey of orthopaedic surgeons and controls. A health surveillance questionnaire of symptoms associated with Hand Arm Vibration Syndrome (HAVS) was sent to 1200 orthopaedic surgeons (test group) and 1200 gynaecological surgeons (controls). Results: Measured accelerations of the saws were 3.42 to 10.7 m/sec2 using BSI standards and 90.5 to 182 m/sec−2 using NIOSH standards. These vibration levels are compatible with those reported to cause significant upper limb symptoms

Survey responses were received from 741(61.7%) of the test group and 748 (62.3%) of the control group. A statistically significant increase in the prevalence of the neurological symptoms was seen among orthopaedic surgeons (p< 0.001). A significant increase in musculoskeletal problems (p< 0.008) and muscle pain (p< 0.004) was also found. No significant difference was seen in the prevalence of vascular symptoms. The neurological symptoms were not related to other potential medical causes. Conclusions: Orthopaedic surgeons report an excess of upper limb symptoms and these may be linked to vibration exposure at work.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 633 - 636
1 Jul 2003
Eisenstein SM Roberts S


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 326 - 326
1 Nov 2002
Roberts S McCall IW Urban JPG Menage J Evans EH Evans C Eisenstein. SM
Full Access

Objective: To determine if (a) inflammatory mediators are present in herniated intervertebral discs and (b) if their presence correlates with inflammation of nerve roots or symptoms.

Design: Inflammation was assessed with gadolinium enhancement of MRI. Neurological compromise was measured. Disc tissue was examined for inflammatory mediators IL-1α and β, IL-6, MCP-1, TSG-6, iNOS, TNFα and thromboxane.

Patients: Sixty-five discs were removed from 64 patients undergoing surgery for disc prolapse.

Outcome measures: We developed (i) an MRI score to assess inflammation radiologically prior to surgery (n=28, mean 4.9±6.8 days), (ii) a Surgical Score to assess inflammation of the nerve roots at surgery (n=44), (iii) a Clinical Score to determine pain, disability and neurological compromise (n=17) and (iv) a Mediator Score to reflect the number and amount of inflammatory mediators present (n=20).

Results: Thirty percent of the prolapses in this study were extrusions, 19% sequestrations and 51% protrusions. Sixteen of the 28 patients with gadolinium had nerve root enhancement (86% of the extrusions, 57% of sequestrations, and 43% of protrusions), whilst 19 had enhancement of or around the disc herniation itself (71% of the extrusions, 86% of sequestrations and 57% of protrusions). The Mediator Scores were highest for the sequestrations (as was the Surgical Score) and lowest for the protrusions, but extruded discs had most IL-1α and β, IL-6, TNFα and thromboxane. Extruded discs had the highest Clinical Score and sequestrated the lowest.

Conclusions: Mediators produced in prolapsed disc appear to play an important role in inflammation of adjacent tissue and nerve roots. The type of mediator present and proximity of the prolapse to the nerve root may be the important factors in determining which pro-lapses are the most painful.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 325 - 325
1 Nov 2002
Johnson WEB Eisenstein SM Roberts. S
Full Access

Objective: The shape of articular chondrocytes regulates their function, changes in response to mechanical load and is altered in osteoarthritis. We aimed to identify the shape of intervertebral disc cells in pathological and normal tissue.

Design: Immunohistology of human intervertebral discs using cytoskeletal markers to examine disc cell shape.

Subjects: Intervertebral discs from patients with degeneration (n=3), scoliosis (n=3), spondylolisthesis (n=3) and from non-pathological cadaveric spines (n=3).

Outcome measures: (i). Cell shape and (ii). Organisation/ content of cytoskeleton.

Results: In degenerate and normal discs, cells of the anulus fibrosus were generally elongated and bipolar, whilst those of the nucleus pulposus were rounded/oval. However, in localised areas, cells were observed with multiple cytoplasmic processes that extended into the discal matrix. In central regions of scoliotic and, most markedly, spondylolisthetic discs, such cells were more frequent. Their processes were vimentin positive (but F-actin negative) and reached up to 80μm in length. F-actin was clearly present in endothelial cells of blood vessels but absent in disc cells. In contrast, vimentin was expressed by disc cells within the discs’ inner regions, but not towards the outer anulus fibrosus.

Conclusions: The altered shape of disc cells in pathological tissue may reflect areas of abnormal loading. These changes are also likely to affect/reflect altered cell function and therefore have a role to play in the pathological process.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 141 - 142
1 Jul 2002
Roberts S Melrose J Smith . Little . Ghosh . Menage J Evans E Eisenstein S
Full Access

Background: The healthy, adult human disc is innervated but the nerves are restricted to the outer few millimetres of the annulus fibrosus. In degenerate discs with associated back pain, however, the nerves are more numerous and penetrate further in.

We have used a sheep model of intervertebral disc degeneration to monitor the presence and organisation of nerves in the disc as degeneration progresses. This model has been used to study morphological and bio-chemical changes of the disc as it degenerates, in addition to associated alterations in end-plate vascularity and vertebral bone remodelling. One aspect of this model which has not been studied to date is how the innervation of the disc may change with the onset of degeneration. This is the object of the present study.

Materials and Methods: Four-year old, skeletally mature Merino wether sheep (n=64) were divided randomly into lesion and control groups. A surgical incision was created in the anterolateral annulus in the L1–L2 and L3–L4 discs of the lesion group. The control group received the same retroperitoneal surgical approach but the annulus was not incised. Intact lumbar discs encompassed by adjacent vertebral bodies were removed at 3,6,12 and 26 months post operation. Specimens were fixed, decalcified and paraffin embedded before sectioning (7μ thick, vertical sagittal sections) and stained immunohistochemically with the neuronal marker, PGP9.5, together with standard histological stains.

Results: The incised region of the outer annulus underwent collagenous re-organisation, consistent with an active repair process as early as three months post-operatively. However, the inner annular lesion had a poor repair response and propagated with time, sometimes through to the nucleus. In contrast, remodelling of the outer annular lamellae occurred across the cut region. For example, in one sample at two years post injury there were up to six lamellae “bridging the gap”. Nerves were present in all samples but in the sham animals they were very few and confined to the very outer annulus or longitudinal ligament. In the operated animals, nerves were more extensive, occurring in the matrix adjacent to the fissure where there was often blood vessel ingrowth. The maximum number of nerves was seen at 12 months post-operatively, before diminishing in number at 24 months post-op. This paralleled the presence and extent of blood vessel penetration in this experimental model.

Conclusions: We have used an animal model to follow longitudinally the penetration of nerves into the ovine intervertebral disc in association with disc degeneration. Whilst we obviously cannot assess back pain in these animals, and not all nerves are nociceptive, nerves nevertheless are a pre-requisite for the perception of pain. Hence the greater numbers, size and penetration of nerves into degenerate discs demonstrated here has important implications not only for the aetiopathogenesis of degenerative disc disease but also for the treatment of its associated symptoms. Further characterisation of this innervation, i.e. whether autonomic or sensory, may provide an indication as to its nociceptive potential.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 142 - 142
1 Jul 2002
Faulkner A Johnson W Eisenstein S Zhao X White B Franklin V Lyndon F Tighe B Roberts S
Full Access

Introduction: Intervertebral disc degeneration occurs with ageing and is often associated with back pain. During such degeneration, gross morphological differences between the central nucleus pulposus (NP) and outer annulus fibrosus (AF) are lost and the disc loses hydration and height due to decreased proteoglycan content. The cartilage endplate may also become calcified and this blocks the passage of nutrients into the disc, causing cell death and further degeneration. A potential therapy of degeneration is “re-inflation” of the disc with the use of hydrogels seeded with autologous disc cells. In this study, we have assessed the ability of a variety of hydrogels to support intervertebral disc cell growth.

Method: Intervertebral disc cells were isolated enzymatically from bovine tails and cultured as a monolayer in 10% foetal calf serum in DMEM containing antibiotics and ascorbic acid. This stimulates the cells to proliferate and thereby produces increased cell numbers. The cells were then seeded onto various hydrogels including hyaluronic acid (HA), 2-hydroxyethyl methacrylate (HEMA), N’N’ dimethyl methacrylate (NNDMA) and polyacryloyl morpholine (AMO) before harvesting at set time points of 1, 3, 6 and 9 days for hyaluronic acid and 1, 7, 14, 21, and 28 days for the other hydrogels. Cell number, morphology, viability and adherence to or migration into the hydrogels were assessed. Cell proliferation was also determined by immunostaining for the Ki67 antigen.

Results: Disc cells became incorporated in the HA gel, adopted a spherical morphology and remained viable for up to nine days. However, after a few days, a large proportion of the cells began to migrate through the gel to form a monolayer on the bottom of the tissue culture well. These monolayered cells became fibroblastic and proliferated. NP cells appeared to proliferate to a greater extent than AF cells both in monolayer and in suspension. Ki67 antigen immunostaining confirmed cell proliferation. On the non-porous HEMA, NNDMA and AMO, both cell types adhered and adopted a fibroblast-like morphology. Cell adhesion was greatest to the HEMA. NNDMA and AMO had lower levels of cell adherence. Both cell types became incorporated into the porous materials and adopted a rounded morphology. Cell incorporation appeared to be greatest into porous HEMA.

Conclusion: These initial studies show that intervertebral disc cells will adhere to or migrate into a variety of hydrogels and remain viable. The morphology and proliferative capacity of cells derived from both the AF and NP were responsive to the structure of the hydrogel with which they were cultured. Thus, cells were able to become fibroblastic or chondrocytic. Further analyses will reveal whether matrix synthesis by disc cells is similarly responsive to the hydrogel format. The results of these experiments suggest that the hydrogels tested have potential as support matrices in intervertebral disc repair to provide relief from discogenic low-back pain.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 92
1 Mar 2002
Johnson W Eisenstein S Roberts S
Full Access

Mature human intervertebral disc cells have generally been described as being either fibroblast-like or chondrocyte-like; i.e. appearing either elongated and bipolar or rounded/oval. Fibroblast-like cells are observed within the outer regions of the anulus fibrosus whilst chondrocyte-like cells are found in the more central regions of the disc. However, a few reports have noted that in some circumstances disc cells appear to extend more elaborate cytoplasmic processes into their surrounding extracellular matrix. In this study, we have examined healthy and pathological human intervertebral discs for the presence of the cytoskeletal elements, F-actin and vimentin.

Tissues examined included discs of no known pathology, discs with spondylolithesis, scoliosis specimens taken from the convex and concave sides, and degenerated discs. F-actin was not readily observed within discs cells but was a marked feature of vascular tissue within the disc and occasionally seen in infiltrating cells. Vimentin was more readily seen within cells of the inner anulus fibrosus and nucleus pulposus. In general, disc cell morphology was fibrocyte or chondrocyte-like; however, in spondylolisthetic discs, cells with numerous cytoplasmic projections were frequently observed.

The differential morphologies and cytoskeletal composition observed in disc cells may be indicative of variations in mechanical strains and/or pathologies, or indeed of cell function.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 92 - 92
1 Mar 2002
Roberts S Menage J Evans E Urban J Day A Eisenstein S
Full Access

The aim of this study was to identify potential inflammatory mediators in herniated and non-herniated intervertebral disc. It has been suggested that inflammation of the nerve root is a pre-requisite for disc herniations to be symptomatic. What leads to this inflammation is a matter of conjecture; one possible cause may be inflammatory mediators released from the herniated disc tissue itself. In this study we have examined discs from individuals with and without disc herniations to determine if there is a different degree of occurrence.

Twenty two discs from 21 patients with disc herniation were examined together with four discs from patients with other disc disorders and five age-matched discs from individuals obtained at autopsy. Samples were studied for the presence of blood vessels and inflammatory cytokines: IL-1α and β, IL-6, INOS, MCP1, TNFα, TSG-6 and thromboxane.

Of the herniated discs 10 were protrusions, six extrusions and six sequestrations. There was less of all the cytokines in the non-herniated discs than found in the herniated, with very little immunostaining for iNOS or IL-1α in any samples. Staining was seen in all herniated samples for IL-1β, but in fewer for IL-six and MCP1 (86%), thromboxane (68%), TNFα (64%) and TSG-6 (59%). The presence of cytokines was strongly associated with the presence of blood vessels. Protruded discs had less TNFα and thromboxane than sequestrated or extruded discs.

Cytokines appear to play an active role in the aetiopathogenesis of disc herniations. Some may be involved in the stimulation of degradative enzymes and hence resorption of, for example, sequestrations, whereas others may be responsible for an inflammatory response in the surrounding tissues such as nerve roots.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 92
1 Mar 2002
Johnson W Caterson B Eisenstein S Hynds D Snow D Roberts S
Full Access

Although an increased and deeper innervation of painful and degenerate intervertebral discs (IVDs) has been reported, the mechanisms that regulate nerve growth into the IVD are largely unknown. In other tissues, proteoglycans have been found to act as nerve guidance molecules that, generally speaking, inhibit nerve growth. As disc degeneration is characterised by a loss of proteoglycans, we assessed the effects of IVD proteoglycans on nerve growth and guidance.

Using in vitro assays of nerve growth, we found that human disc proteoglycans inhibited nerve attachment, neurite extension and induced sensory growth cone turning in a dose-dependent manner. Digestions with chondroitinase ABC or keratinase abrogated these inhibitory effects. Proteoglycans of the anulus fibrosus were more inhibitory than those from the nucleus pulposus.

Disc proteoglycans inhibit nerve growth and this inhibitory activity may dependent on proteoglycan glycosylation and/or sulfation. A loss of proteoglycans from degenerative discs may therefore predispose the discs to nerve invasion.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1064 - 1068
1 Nov 1999
Richardson JB Caterson B Evans EH Ashton BA Roberts S

Tissue engineering is an increasingly popular method of addressing pathological disorders of cartilage. Recent studies have demonstrated its clinical efficacy, but there is little information on the structural organisation and biochemical composition of the repair tissue and its relation to the adjacent normal tissue. We therefore analysed by polarised light microscopy and immunohistochemistry biopsies of repair tissue which had been taken 12 months after implantation of autologous chondrocytes in two patients with defects of articular cartilage.

Our findings showed zonal heterogeneity throughout the repair tissue. The deeper zone resembled hyaline-like articular cartilage whereas the upper zone was more fibrocartilaginous. The results indicate that within 12 months autologous chondrocyte implantation successfully produces replacement cartilage tissue, a major part of which resembles normal hyaline cartilage.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 683 - 683
1 Jul 1996
ROBERTS S THOMAS P


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 4 | Pages 647 - 650
1 Jul 1991
Roberts S Foley A Swallow H Wallace W Coughlan D

The articular surface of the humeral head is usually described as facing posteromedially, making an angle of between 16 degrees and 35 degrees with the transepicondylar plane. At hemiarthroplasty the articular surface also appears to be offset posteriorly with respect to the humeral shaft. Coracoid impingement may occur if this offset is not accommodated. An analysis was made of 29 cadaveric humeri using an industrial co-ordinate measuring machine. The position of the centre of the head was defined with respect to the humeral shaft and transepicondylar plane. The humeral articular surface was found to be retroverted by 21.4 degrees and its centre offset posteriorly by 4.7 mm. Previous interpretation of retroversion did not take into account the posterior displacement, and this may be of importance in improving future prosthetic design.


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 3 | Pages 418 - 422
1 May 1986
Roberts S Weightman B Urban J Chappell D

Articular cartilage from the femoral heads of 27 patients having an arthroplasty for subcapital fracture was studied, and its mechanical and chemical properties compared to those of a group of 33 age-matched macroscopically normal autopsy specimens. Water and proteoglycan contents were measured, as were swelling ability, compressive and tensile strength of the cartilage, and the density of the underlying bone. Cartilage from the fracture specimens had a significantly reduced proteoglycan content, as measured by fixed charge density, and increased swelling ability. These results indicate that this group differs from the "normal" population and care should be taken before they are accepted as control material for studies on osteoarthritic cartilage. Another finding was that bone density was much the same in the fracture and the normal group. This casts some doubt upon the concept that patients who sustain subcapital fractures are more osteoporotic than the average for the same age range.


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 2 | Pages 278 - 288
1 Mar 1986
Roberts S Weightman B Urban J Chappell D

We studied the mechanical and biochemical properties of articular cartilage from 22 osteoarthritic femoral heads obtained at operation and 97 femoral heads obtained at autopsy. Cartilage from the zenith and from the antero-inferior aspect of each head was tested both in tension and in compression. Water content, swelling ability and proteoglycan content were measured, the cartilage was examined histologically and the density of the underlying bone was assessed. Fifty-five of the autopsy specimens were defined as macroscopically normal because they exhibited no progressive fibrillation patterns on staining with Indian ink; but significant changes in water content, bone density and tensile strength related to age were seen in this group. In 20 pairs of femoral heads which were both macroscopically normal, we found, surprisingly, that cartilage from the left and right sides of the same patient was sometimes very different. Compared with the normal autopsy specimens the osteoarthritic specimens had a significantly increased swelling ability, a lower proteoglycan content and impaired mechanical properties, being both weaker in tension and softer in compression. Abnormal autopsy specimens had values intermediate between those of osteoarthritic and normal groups. Results from this abnormal group suggest that there is no primary loss of proteoglycan in early osteoarthritis.


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 4 | Pages 529 - 534
1 Nov 1981
Beard H Roberts S O'Brien J

Specific antisera to collagen Types I, II and III and proteoglycan were used to investigate the distributions of these molecules in normal human intervertebral discs. Immunofluorescent staining indicated the presence of small amounts of Type III collagen located pericellularly in normal adult intervertebral discs. This finding had not been demonstrated previously by other methods. Similar specimens of intervertebral discs from 17 patients with scoliosis of varying aetiologies were examined, but no evidence was obtained for primary connective tissue defects. Secondary changes, especially marked vascularisation of the inner annulus, were apparent in a number of scoliotic discs, and some of these showed enhanced staining for collagen Type I and proteoglycan, and intercellular matrix staining for Type III collagen.