header advert
Results 21 - 25 of 25
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 507 - 507
1 Dec 2013
Roche C Diep P Hamilton M Flurin PH Zuckerman J Routman H
Full Access

Introduction

Reverse shoulder arthroplasty (rTSA) increases the deltoid abductor moment arm length to facilitate the restoration of arm elevation; however, rTSA is less effective at restoring external rotation. This analysis compares the muscle moment arms associated with two designs of rTSA humeral trays during two motions: abduction and internal/external rotation to evaluate the null hypothesis that offsetting the humerus in the posterior/superior direction will not impact muscle moment arms.

Methods

A 3-D computer model simulated abduction and internal/external rotation for the normal shoulder, the non-offset reverse shoulder, and the posterior/superior offset reverse shoulder. Four muscles were modeled as 3 lines from origin to insertion. Both offset and non-offset reverse shoulders were implanted at the same location along the inferior glenoid rim of the scapula in 20° of humeral retroversion. Abductor moment arms were calculated for each muscle from 0° to 140° humeral abduction in the scapular plan using a 1.8: 1 scapular rhythm. Rotation moment arms were calculated for each muscle from 30° internal to 60° external rotation with the arm in 30° abduction.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 347 - 347
1 Dec 2013
Higa M Chang C Roche C Struk A Farmrer K Wright T Banks S
Full Access

Introduction

Persistent problems and relatively high complication rates with reverse total shoulder arthroplasty (RTSA) are reported (1, 2). It is assumed that some of these complications are affected by improper intraoperative soft tissue tension. Achieving proper intraoperative soft tissue tension is an obvious surgical goal. However, intraoperative soft tissue tension measurements and methods for RTSA have not been reported. One way to quantify soft tissue tension is to measure intraoperative joint forces using an instrumented prosthesis. Hence, we have developed an instrumented RTSA to measure shoulder joint forces intraoperatively. The goal of this study was to measure intraoperative shoulder joint forces during RTSA.

Materials and Methods

The instrumented shoulder prosthesis measures the contact force vector between the glenosphere and humeral tray. This force sensor is a custom instrumented trial implant that can be used with an existing RTSA system (EQUINOXE, Exactech Inc, Gainesville, FL) just as a standard trial implant is used. Four uniaxial foil strain gauges (QFLG-02-11-3LJB, Tokyo Sokki Kenkyujo Co., Ltd., JP) are instrumented inside the sensor. Using a calibration matrix, the three force components were calculated from four strain gauge outputs (3).

Sixteen patients who underwent RTSA took part in this IRB approved study. All patients were greater than 50 years of age and willing to review and sign the study informed consent form. After obtaining informed consent for surgery, a standard deltopectoral approach to the shoulder was performed. The instrumented trial prostheses were assembled on the glenoid baseplate instead of a standard glenosphere. After the joint was reduced, joint forces were recorded during cyclic rotation, flexion, scapular plane movement (scaption), and adduction of the shoulder. Strain gauge outputs were recorded during these movements as well as the neutral position just before movements. Mean values of forces with each motion were compared by one-way analysis of variance (ANOVA). A multiple comparisons test was subsequently performed to examine differences between motions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 506 - 506
1 Dec 2013
Roche C Diep P Hamilton M Flurin PH Zuckerman J Routman H
Full Access

Introduction

The inferior/medial shift in the center of rotation (CoR) associated with reverse shoulder arthroplasty (rTSA) shortens the anterior and posterior shoulder muscles; shortening of these muscles is one explanation for why rTSA often fails to restore active internal/external rotation. This study quantifies changes in muscle length from offsetting the humerus in the posterior/superior directions using an offset humeral tray/liner with rTSA during two motions: abduction and internal/external rotation. The offset and non-offset humeral tray/liner designs are compared to evaluate the null hypothesis that offsetting the humerus in the posterior/superior direction will not impact muscle length with rTSA.

Methods

A 3-D computer model was developed to simulate abduction and internal/external rotation for the normal shoulder, the non-offset reverse shoulder, and the posterior/superior offset reverse shoulder. Seven muscles were modeled as 3 lines from origin to insertion. Both offset and non-offset reverse shoulders were implanted at the same location along the inferior glenoid rim of the scapula in 20° of humeral retroversion. Muscle lengths were measured as the average of the 3 lines simulating each muscle and are presented as an average length over each arc of motion (0 to 65° abduction with a fixed scapula and 0 to 40° of internal/external rotation with the humerus in 0° abduction) relative to the normal shoulder.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 164 - 164
1 Dec 2013
Roche C Diep P Grey S Flurin PH Zuckerman J Wright T
Full Access

Introduction

Posterior glenoid wear is common in glenohumeral osteoarthritis. Tightening of the subscapularis causes posterior humeral head subluxation and a posterior load concentration on the glenoid. The reduced contact area causes glenoid wear and potentially posterior instability. To correct posterior wear and restore glenoid version, surgeons may eccentrically ream the anterior glenoid to re-center the humeral head. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids. This study quantifies the change in rotator cuff muscle length (relative to a nonworn/normal shoulder) resulting from three sizes of posterior glenoid defects using 2 different glenoids/reaming methods: 1) eccentric reaming using a standard (nonaugmented) glenoid and 2) off-axis reaming using an 8, 12, and 16° posterior augment glenoid.

Methods

A 3-D computer model was developed in Unigraphics (Siemens, Inc) to simulate internal/external rotation and quantify rotator cuff muscle length when correcting glenoid version in three sizes of posterior glenoid defects using posterior augmented and non-augmented glenoid implants. Each glenoid was implanted in a 3-D digitized scapula and humerus (Pacific Research, Inc); 3 sizes (small, medium, and large) of posterior glenoid defects were created in the scapula by posteriorly shifting the humeral head and medially translating the humeral head into the scapula in 1.5 mm increments. Five muscles were simulated as three lines from origin to insertion except for the subscapularis which was wrapped. After simulated implantation in each size glenoid defect, the humerus was internally/externally rotated from 0 to 40° with the humerus at the side. Muscle lengths were measured as the average length of the three lines simulating each muscle at each degree of rotation and compared to that at the corresponding arm position for the normal shoulder without defect to quantify the percentage change in muscle length for each configuration.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 199 - 200
1 Mar 2003
O’Malley M Dorgan J Bruce C Roche C
Full Access

Introduction: Atlanto-axial rotatory fixation is a rare condition which occurs more. commonly in children than in adults. The terminology can be confusing and the condition is also known as. ‘ atlanto-axial rotatory sub-luxation’ and ‘atlanto-axial rotary dislocation’ . Rotatory fixation is the preferred term however , as in most cases the fixation occurs within the normal range of rotation of the joint and by definition therefore the joint is neither subluxed nor dislocated. Atlanto-axial rotatory fixation is a cause of acquired torticollis. Diagnosis can be difficult and is often delayed. The classification. system proposed by Fielding in 1977 is most frequently used and will be discussed in detail. Given that this classification system was devised in the days before CT, as well as the fact that combined atlanto-axial and atlanto-occipital rotatory subluxation is omitted from the classification, we propose a modification to the classification of this rare but significant disorder.

Methods and Results: The radiological findings in six cases of atlanto-axial rotatory fixation will be illustrated, including a case with associated atlanto-occipital sub-luxation. The pertinent literature will be reviewed and a more comprehensive classification system proposed. The imaging approach to diagnosis and the orthopaedic approach to management will be discussed.

Conclusion: In general, children who present with a traumatic torticollis should be treated conservatively with cervical collar and anti-inflammatory medication for one week. Those children whose torticollis fails to resolve after one week require aggressive investigation by ‘dynamic’ computed tomography to assess whether the joint is fixed. If however there is a history of significant trauma then immediate radiological assessment is advised. This approach will avoid over-investigation and over-treatment yet will still detect atlanto-axial rotatory fixation early enough to achieve a good outcome.