Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Improving Muscle Length Using an Offset Humeral Tray With Reverse Total Shoulder Arthroplasty

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction

The inferior/medial shift in the center of rotation (CoR) associated with reverse shoulder arthroplasty (rTSA) shortens the anterior and posterior shoulder muscles; shortening of these muscles is one explanation for why rTSA often fails to restore active internal/external rotation. This study quantifies changes in muscle length from offsetting the humerus in the posterior/superior directions using an offset humeral tray/liner with rTSA during two motions: abduction and internal/external rotation. The offset and non-offset humeral tray/liner designs are compared to evaluate the null hypothesis that offsetting the humerus in the posterior/superior direction will not impact muscle length with rTSA.

Methods

A 3-D computer model was developed to simulate abduction and internal/external rotation for the normal shoulder, the non-offset reverse shoulder, and the posterior/superior offset reverse shoulder. Seven muscles were modeled as 3 lines from origin to insertion. Both offset and non-offset reverse shoulders were implanted at the same location along the inferior glenoid rim of the scapula in 20° of humeral retroversion. Muscle lengths were measured as the average of the 3 lines simulating each muscle and are presented as an average length over each arc of motion (0 to 65° abduction with a fixed scapula and 0 to 40° of internal/external rotation with the humerus in 0° abduction) relative to the normal shoulder.

Results

Both the offset and non-offset reverse shoulders shifted the CoR medially by 27.1 mm and inferiorly by 4.5 mm relative to the normal shoulder. The offset humeral tray/liner shifted the humerus posteriorly and superiorly relative to the non-offset reverse shoulder. As depicted in Figures 1–3, the inferior shift in the CoR elongated the anterior, middle, and posterior heads of the deltoid for both the offset and non-offset reverse shoulders during both types of motions. The more superior position of the humerus with the offset tray elongating the deltoid less than did the non-offset tray. As depicted in Figures 2 and 3, the medial shift in the CoR shortened the subscapularis, infraspinatus, teres major, and teres minor for both the offset and non-offset reverse shoulders during both types of motions. However, the more posterior position of the humerus with the offset tray better restored the anatomic muscle length of all 7 muscles during both types of motion.

Discussion and Conclusions

Offsetting the humerus in the posterior/superior direction using the offset humeral tray/liner altered muscle lengths and resulted in more anatomic muscle tensioning (e.g. each muscle length approached 0%) relative to the non-offset reverse shoulder. These observations related to muscle shortening may describe the mechanism for instability and poor internal/external rotation with rTSA; and if so, more anatomic muscle tensioning with the offset humeral tray offers the potential for improved internal/external rotation capability. Based upon these results, we reject the null hypothesis and conclude that offsetting the position of the humerus in the posterior/superior direction does impact muscle length with rTSA. Future work should evaluate the clinical significance of these observed changes in muscle length.


*Email: