header advert
Results 21 - 22 of 22
Results per page:
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 358 - 358
1 Sep 2005
Carbone A Howie D Findlay D McGee M Bruce W Stamenkov R Callary S Dunlop D Howie C Lawes P
Full Access

Introduction and Aims: The usefulness of bone graft substitutes and growth factors to promote bone graft incorporation and prosthesis fixation in hip replacement should be examined in a loaded model, as results from cortical defect models may not apply. This paper reviews the results of femoral impaction grafting using these materials in an ovine hip replacement model.

Method: At cemented hemiarthroplasty, sheep femurs were impacted with allograft bone (control group n=23) or with allograft mixed with: 1) corglaes bioglass (n=12); 2) a synthetic hydroxyapatite (HA) (n=6) or the bone morpohogenetic protein OP-1 (n=6) (study groups) and implanted with a cemented double taper femoral stem. Sheep were sacrificed at between six and 26 weeks. The primary outcome was femoral stem subsidence, as determined more recently by the development of clinical radiostereometric analysis (RSA) in this model. Femoral fixation, as assessed by ex-vivo mechanical testing, and bone graft incorporation, as assessed by histological review and histoquantitation, were also key outcomes.

Results: In the control groups, there was a consistent response with bone graft incorporation by new bone advancing proximal to distally in the femur and advancing from the endocortex towards the cement mantle. Mineralised bone apposition occurred by six weeks and this was preceeded by partial resorption of the graft. Complete graft incorporation, with subsequent remodelling of bone, was evident proximally by 26 weeks. Bone graft incorporation in femurs impacted with a 1:1 allograft: bioglass mix was minimal and there was often partial or complete resorption of the graft with replacement by fibrous tissue, resorption of endocortical bone and instability of the femoral prosthesis. Supplementation of allograft with OP-1 promotes initial graft resorption, thus hastening bone graft incorporation and remodelling but one case of stem subsidence, that may have been associated with early resorption seen in the OP-1 group, reinforces the need for further studies examining dose response. There was excellent incorporation of the allograft and HA, with new woven bone directly apposing the HA surface and integrated into the larger porous spaces of the HA. There was no adverse response to the HA and there was minimal to no subsidence of the stem at the cement-bone interface, as determined by RSA.

Conclusion: This model is extremely valuable for investigating new biological approaches to reconstruction of major bone deficiency at revision hip replacement and demonstrates clear differences between materials used to supplement allograft, with HA and OP-1 giving encouraging results. RSA is an essential outcomes tool for this model.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 467 - 468
1 Apr 2004
Stamenkov R Howie D Taylor J Findlay D McGee M Kourlis G Callary S Pannach S
Full Access

Introduction Peri-acetabular osteolysis is a serious complication of total hip arthroplasty (THA). The aim of this study was to determine, using quantitative computed tomography (CT), the location, volume and rate of progression of peri-acetabular osteolytic lesions, and to determine the validity of this CT technique with intra-operative measurements.

Methods High-resolution spiral multislice CT scan (Somatom Volume Zoom, Siemens, Munich, Germany), with metal-artefact suppression protocol, was used to measure the volume of osteolytic lesions around 47 cementless THAs in 36 patients (median age 73 years, duration 14 years, range five to 24 years). In vitro validation was undertaken. CT scans were taken from the top of sacroiliac joint down to two centimetres below the end of the prosthesis. Reconstruction images were analysed by two different observers and progression of osteolysis with time was determined. In some patients, subsequently revised, in-vivo CT measurements were compared to intra-operative measurements. The rate of progression of osteolytic lesions was calculated. The technique was optimised and validated by extensive in-vitro studies, using bovine and human pelves.

Results The incidence of lesions located in each site was: the ilium, 65%; around fixation screws, 20%; in the anterior column, nine percent; and in the medial wall, six percent. Some lesions were shown to be relatively quiescent, while others were aggressively osteolytic. Intra and inter-observer error for the CT measurement technique was four percent and 2.8%, respectively. In vitro volumetric measurements of simulated bone defects adjacent to the acetabular component and fixation screw were accurate to within 96% and precise to 98%. In addition, preliminary data obtained intra-operatively indicate the accuracy of CT in identifying the sites of osteolysis.

Conclusions CT is thus a valid and reliable technique for investigating the natural history of osteolysis and the factors that may influence its progression. It will also enable assessment of non-surgical treatments of osteolysis.

In relation to the conduct of this study, one or more of the authors is in receipt of a research grant from a non-commercial source.