Advertisement for orthosearch.org.uk
Results 1 - 20 of 209
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 181 - 187
1 Feb 2014
Owen DH Russell NC Smith PN Walter WL

Squeaking arising from a ceramic-on-ceramic (CoC) total hip replacement (THR) may cause patient concern and in some cases causes patients to seek revision surgery. We performed a meta-analysis to determine the incidence of squeaking and the incidence of revision surgery for squeaking. A total of 43 studies including 16 828 CoC THR that reported squeaking, or revision for squeaking, were entered into the analysis. The incidence of squeaking was 4.2% and the incidence of revision for squeaking was 0.2%. The incidence of squeaking in patients receiving the Accolade femoral stem was 8.3%, and the incidence of revision for squeaking in these patients was 1.3%. Cite this article: Bone Joint J 2014;96-B:181–7


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1597 - 1601
1 Dec 2011
Walter WL Kurtz SM Esposito C Hozack W Holley KG Garino JP Tuke MA

This multicentre study analysed 12 alumina ceramic-on-ceramic components retrieved from squeaking total hip replacements after a mean of 23 months in situ (11 to 61). The rates and patterns of wear seen in these squeaking hips were compared with those seen in matched controls using retrieval data from 33 ‘silent’ hip replacements with similar ceramic bearings. All 12 bearings showed evidence characteristic of edge-loading wear. The median rate of volumetric wear was 3.4 mm. 3. /year for the acetabular component, 2.9 mm. 3. /year on the femoral heads and 6.3 mm. 3. /year for head and insert combined. This was up to 45 times greater than that of previously reported silent ceramic-on-ceramic retrievals. The rate of wear seen in ceramic components revised for squeaking hips appears to be much greater than in that seen in retrievals from ‘silent’ hips.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 439 - 442
1 Apr 2011
Sexton SA Yeung E Jackson MP Rajaratnam S Martell JM Walter WL Zicat BA Walter WK

We investigated factors that were thought to be associated with an increased incidence of squeaking of ceramic-on-ceramic total hip replacements. Between June 1997 and December 2008 the three senior authors implanted 2406 primary total hip replacements with a ceramic-on-ceramic bearing surface. The mean follow-up was 10.6 years. The diagnosis was primary osteoarthritis in each case, and no patient had undergone previous surgery to the hip. We identified 74 squeaking hips (73 patients) giving an incidence of 3.1% at a mean follow-up of 9.5 years (4.1 to 13.3). Taller, heavier and younger patients were significantly more likely to have hips that squeaked. Squeaking hips had a significantly higher range of post-operative internal (p = 0.001) and external rotation (p = 0.003) compared with silent hips. Patients with squeaking hips had significantly higher activity levels (p = 0.009). A squeaking hip was not associated with a significant difference in patient satisfaction (p = 0.24) or Harris hip score (p = 0.34). Four implant position factors enabled good prediction of squeaking. These were high acetabular component inclination, high femoral offset, lateralisation of the hip centre and either high or low acetabular component anteversion. This is the largest study to date to examine patient factors and implant position factors that predispose to squeaking of a ceramic-on-ceramic hip. The results suggest that factors which increase the mechanical forces across the hip joint and factors which increase the risk of neck-to-rim impingement, and therefore edge-loading, are those that predispose to squeaking


Bone & Joint Research
Vol. 5, Issue 11 | Pages 531 - 537
1 Nov 2016
Burgo FJ Mengelle DE Ozols A Fernandez C Autorino CM

Objectives. Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. Methods. An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared. Results. The magnitudes of the maximum amplitudes of the bare stem were in the range of 10.8 V to 11.8 V, whereas the amplitudes for the same stems with a cement mantle in a cadaveric bone decreased to 0.3 V to 0.7 V, implying a pulse-attenuation efficiency of greater than 97%. The same magnitude is close to 40% when the comparison is made against stems implanted in cadaveric bone femurs without cement. Conclusion. The in vitro model presented here has shown that the cement had a remarkable effect on sound attenuation and a strong energy absorption in cement mantle and bone. The visco-elastic properties of cement can contribute to the dissipation of vibro-acoustic energy, thus preventing hip prostheses from squeaking. This could explain, at least in part, the lack of reports of squeaking when hybrid fixation is used. Cite this article: F. J. Burgo, D. E. Mengelle, A. Ozols, C. Fernandez, C. M. Autorino. The damping effect of cement as a potential mitigation factor of squeaking in ceramic-on-ceramic total hip arthroplasty. Bone Joint Res 2016;5:531–537. DOI: 10.1302/2046-3758.511.BJR-2016-0058.R1


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 160 - 165
1 Feb 2013
McDonnell SM Boyce G Baré J Young D Shimmin AJ

Noise generation has been reported with ceramic-on-ceramic articulations in total hip replacement (THR). This study evaluated 208 consecutive Delta Motion THRs at a mean follow-up of 21 months (12 to 35). There were 141 women and 67 men with a mean age of 59 years (22 to 84). Patients were reviewed clinically and radiologically, and the incidence of noise was determined using a newly described assessment method. Noise production was examined against range of movement, ligamentous laxity, patient-reported outcome scores, activity level and orientation of the acetabular component. There were 143 silent hips (69%), 22 (11%) with noises other than squeaking, 17 (8%) with unreproducible squeaking and 26 (13%) with reproducible squeaking. Hips with reproducible squeaking had a greater mean range of movement (p < 0.001) and mean ligament laxity (p = 0.004), smaller median head size (p = 0.01) and decreased mean acetabular component inclination (p = 0.02) and anteversion angle (p = 0.02) compared with the other groups. There was no relationship between squeaking and age (p = 0.13), height (p = 0.263), weight (p = 0.333), body mass index (p = 0.643), gender (p = 0.07) or patient outcome score (p = 0.422). There were no revisions during follow-up. Despite the surprisingly high incidence of squeaking, all patients remain satisfied with their hip replacement. Cite this article: Bone Joint J 2013;95-B:160–5


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1434 - 1441
1 Nov 2018
Blakeney WG Beaulieu Y Puliero B Lavigne M Roy A Massé V Vendittoli P

Aims. This study reports the mid-term results of total hip arthroplasty (THA) performed using a monoblock acetabular component with a large-diameter head (LDH) ceramic-on-ceramic (CoC) bearing. Patients and Methods. Of the 276 hips (246 patients) included in this study, 264 (96%) were reviewed at a mean of 67 months (48 to 79) postoperatively. Procedures were performed with a mini posterior approach. Clinical and radiological outcomes were recorded at regular intervals. A noise assessment questionnaire was completed at last follow-up. Results. There were four re-operations (1%) including one early revision for insufficient primary fixation (0.4%). No hip dislocation was reported. The mean University of California, Los Angeles (UCLA) activity score, 12-Item Short-Form Health Survey (SF-12) Mental Component Summary (MCS) score, SF-12 Physical Component Summary (PCS) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and Forgotten Joint Score (FJS) were 6.6 (2 to 10), 52.8 (25.5 to 65.7), 53.0 (27.2 to 66.5), 7.7 (0 to 63), and 88.5 (23 to 100), respectively. No signs of loosening or osteolysis were observed on radiological review. The incidence of squeaking was 23% (n = 51/225). Squeaking was significantly associated with larger head diameter (p < 0.001), younger age (p < 0.001), higher SF-12 PCS (p < 0.001), and UCLA scores (p < 0.001). Squeaking did not affect patient satisfaction, with 100% of the squeaking hips satisfied with the surgery. Conclusion. LDH CoC THAs have demonstrated excellent functional outcomes at medium-term follow-up, with very low revision rate and no dislocations. The high incidence of squeaking did not affect patient satisfaction or function. LDH CoC with a monoblock acetabular component has the potential to provide long term implant survivorship with unrestricted activity, while avoiding implant impingement, liner fracture at insertion, and hip instability. Cite this article: Bone Joint J 2018;100-B:1434–41


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 910 - 916
1 Jul 2016
Pierrepont JW Feyen H Miles BP Young DA Baré JV Shimmin AJ

Aims. Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings are encouraging. However, there is a risk of squeaking. Guidelines for the orientation of the acetabular component are defined from static imaging, but the position of the pelvis and thus the acetabular component during activities associated with edge-loading are likely to be very different from those measured when the patient is supine. We assessed the functional orientation of the acetabular component. Patients and Methods. A total of 18 patients with reproducible squeaking in their CoC hips during deep flexion were investigated with a control group of 36 non-squeaking CoC hips. The two groups were matched for the type of implant, the orientation of the acetabular component when supine, the size of the femoral head, ligament laxity, maximum hip flexion and body mass index. . Results. The mean functional anteversion of the acetabular component at the point when patients initiated rising from a seated position was significantly less in the squeaking group than in the control group, 8.1° (-10.5° to 36.0°) and 21.1° (-1.9° to 38.4°) respectively (p = 0.002). . Conclusion. The functional orientation of the acetabular component during activities associated with posterior edge-loading are different from those measured when supine due to patient-specific pelvic kinematics. Individuals with a large anterior pelvic tilt during deep flexion might be more susceptible to posterior edge-loading and squeaking as a consequence of a significant decrease in the functional anteversion of the acetabular component. . Cite this article: Bone Joint J 2016;98-B:910–16


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 143 - 143
1 Nov 2021
McCarthy C Mahon J Sheridan G Welch-Phillips A O'Byrne J Kenny P
Full Access

Introduction and Objective. Ceramic on Ceramic bearings in Total Hip Arthroplasty (THA) afford a low friction coefficient, low wear rates and extreme hardness. Significant complications include hip squeak, ceramic fracture and poor polyethylene performance in revision procedures due to imbedding of abrasive microscopic ceramic fragments. We report on the results of this bearing at a minimum of 10 years. Materials and Methods. A single-centre retrospective review of 449 THAs was performed. Primary outcome measures included aseptic revision and all-cause revision rates at a minimum of 10 years post operatively. Evaluation of functionality was performed with WOMAC and SF-36 scores which were performed pre-operatively and at intervals of 6 months, one year, 2 years, 5 years and 10 years post operatively. Results. There was a 6.2% (n=28) all-cause and 5.3% (n=24) aseptic revision rate for ceramic on ceramic total hip arthroplasty at minimum of 10 years with a mean time to revision 4.8 years (range 2 months − 11.6 years). Notably, there were 2 revisions for ceramic head fracture, one for ceramic liner fracture, 3 for aseptic loosening and 3 revisions for squeaking. Pain of unknown origin was the most common reason for revision. There was an improvement in postoperative WOMAC scores from a mean of 59.8 (range 15–95) pre-operatively to a mean of 15.6 (range 0–78) at 10 years. Conclusions. This study showed good functional outcomes but high revision rates for CoC THA at a minimum of 10 years. The role for CoC bearings in THA has been called into question in recent years and may continue to decline in popularity, even in younger patients. Further large scale studies are important to assess the long-term outcomes of this bearing surface


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 139 - 139
1 May 2016
Lazennec J Clarke I
Full Access

Explanations for “bearing” noise in ceramic-on-ceramic hips (COC) included stripe-wear formation and loss of lubrication leading to higher friction. However clinical and retrieval studies have clearly documented stripe wear in patients that did not have squeaking. Seldom highlighted has been the risk of metal-on-metal or metal-on-ceramic impingement present in total hip arthroplasty (THA) with metal and ceramic cup designs. The limitation in THA positioning studies has been (i) reliance on 2-dimensional radiographic images and (ii) patients lying supine on the examination table, thus not imaged in squeaking positions. We collected eleven squeaking COC cases for an EOS 3D-imaging functional study. Hip positions were documented in each patient's functional ‘squeaking’ posture using standard and 3-D EOS images for sitting, rising from a chair, hip extension in striding, and single-legged stance. EOS imaging documented for the 1st time that postural dysfunctions with potential impingements were demonstrable for each squeaking case. The 1st major insight in this study came from a female patient who complained of squeaking while walking in flat-soled shoes (Figs. 1a, b). She found that when wearing high-heeled shoes her hip stopped squeaking (Figs. 1c, d). Her lateral EOS view in standing position with heeled shoes revealed that the femoral stem had approximately 3o less hyper-extension compared to flat shoes (Figs. 1b, d, arrows #1,3). The three-dimensional ‘sky-view’ EOS reconstruction of pelvis and femurs (Fig. 2) showed that her femur was also more internally rotated when she wore heels. These subtle shifts in position changed her COC hip from one of squeaking to non-squeaking. A squeaking male patient observed similar postural effects while walking up his boat ramp but not going down the ramp. In both cases, the squeaking was a consequence of cup impinging on a metal femoral neck. Thus the primary cause of squeaking appeared to be hip impingement, i.e. repetitive subluxations that patients generally were not aware of. Another case is representative of situations due to atypical and subtle cup/stem mal-adjustments (Fig. 3); frontal pelvic-tilt, thoracolumbar scoliosis, with 1cm of femur lengthening and a significant increase of offset are observed. Also evident was the femoral-neck retroversion in both standing and sitting. Squeaking occurred when modification of the functional neck orientation occured in one-legged stance (Fig. 3c) or when climbing a stair (Fig. 3d). It was apparent in our EOS studies that patient functionality controlled whether squeaking occurred or not. Thus the new data indicated COC squeaking was a three-fold consequence of component positioning, spine and pelvic adaptions, and variations in patient posture. One limitation here is that our conclusions are based on a small sample of patients and may not be applicable to all. A consequence of such repetitive impingement can be cup rim damage and neck-notching, with release of metal debris. It is well documented that retrieved ceramic bearings are frequently stained black. Thus hip squeaking may likely result from (i) impingement and secondarily (ii) due to ingress of metal particles, and then (iii) producing a failure of lubrication. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 132 - 132
1 May 2016
Pierrepont J Feyen H Baré J Young D Miles B Shimmin A
Full Access

Introduction. Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Methodology. Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading. Results. The mean CPRD was significantly less in the squeaking group than the control group, −2.5mm and 2.9mm respectively, (p < 0.001), Fig 3. The mean pelvic tilt in the flexed seated position was 12.6° (range −13.5° to 30.3°) for the squeaking group and 5.1° (−9.8° to 26.4°) for the control group. Consequently, the mean functional cup anteversion at seat-off was significantly less in the squeaking group than the control group, 8.1° (−10.5° to 36.0°) and 21.1° (−1.9° to 38.4°) respectively (p < 0.001), Fig 3. There were 67% (12) of patients in the squeaking group that showed posterior edge-loading in the simulation compared to only 28% (10) in the control group that exhibited posterior edge-loading in the simulation. Conclusions. Acetabular cup orientation during activities associated with edge-loading are likely very different from those measured when supine. Patients with large anterior pelvic tilts during deep flexion activities might be more susceptible to posterior edge-loading and squeaking in ceramic-on-ceramic bearings, as a consequence of a significant decrease in cup anteversion. If these patients can be identified preoperatively, cup orientation and bearing choice could be customised accordingly to accommodate these individual motion patterns


Bone & Joint 360
Vol. 3, Issue 2 | Pages 8 - 9
1 Apr 2014

The April 2014 Hip & Pelvis Roundup. 360 . looks at: Recent arthroplasty and flight; whether that squeak could be a fracture; diagnosing early infected hip replacement; impaction grafting at a decade; whether squeaking is more common than previously thought; femoral offset associated with post THR outcomes; and periprosthetic fracture stabilisation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 575 - 575
1 Dec 2013
Imbuldeniya A Munir S Chow J Walter W Zicat B Walter W
Full Access

Introduction. Squeaking is a potential problem of all hard on hard bearings yet it has been less frequently reported in metal-on-metal hips. We compared a cohort of 11 squeaking metal-on-metal hip resurfacings to individually matched controls, assessing cup inclination and anteversion between the groups to look for any differences. Methods. We retrospectively reviewed the patient records of 332 patients (387 hip resurfacings) who underwent hip resurfacing between December 1999 and Dec 2012. 11 hips in 11 patients were reported to squeak postoperatively. Each of these patients, except one, were matched by age, sex, BMI and implant to 3 controls. The final patient only had one control due to his high BMI. The latest post-operative radiographs of the squeaking group and controls were analysed using EBRA (Einzel-Bild-Roentgen-Analysis, University of Innsbruck, Austria) software to evaluate cup inclination and anteversion. Results. Post- operative audible squeaking occurred in 11 out of 387 hips (2.84%). The mean follow up of the squeaking group was 88.6 months (19–131 months). The mean time to squeak was 11.3 months (3–22 months). 8 (73%) patients were male, 10 (91%) patients had a Birmingham hip resurfacing and 9 (82%) patients had an operation on the left hip. The mean inclination angle of the cups in the squeaking group was 48.4° (43.9°–55.4°) compared to 50° (37.8° −63°) in the control group. The mean anteversion of the cups in the squeaking group was 17.1°(6.3°–25.7°) compared to 14.6° (4.3° −33.5°) in the control group. There was no statistically significant difference between the cases and their controls for cup inclination (p = 0.36) or cup anteversion (p = 0.31). The mean head size in the squeaking group was smaller at 49.3 mm (46 mm-54 mm), compared to 51.4 mm (48 mm-54 mm) in the control group (p = 0.026). The mean cup size in the squeaking group was also smaller at 56.5 mm (54 mm-62 mm), compared to 57.9 mm (48 mm-60 mm) in the control group (p = 0.007). Overall, 4 (40%) male patients in the squeaking group had a head size less than 50 mm, compared to 0 (0%) in the control group. 3 (27%) patients with squeaking resurfacings underwent revision surgery. 1 (9%) at 72 month for a pseudotumour, 1 (9%) at 114 months for persistant squeaking and 1 (9%) at 117 months for a subtrochanteric fracture after a fall. Conclusions. No difference was found between the radiographic inclination or anteversion of squeaking metal-on-metal hip resurfacing cups compared to a control group. Male patients with squeaking hips were noted to have smaller head and cup sizes than their controls


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 56 - 56
1 Jun 2012
El-Hadi S Stewart T Jin Z Fisher J
Full Access

INTRODUCTION. Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise. METHODS. Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident(r), Stryker(r)) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster(r)). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec(r)) 32 mm diameter (Ceramconcept(r)) components were tested using a PROSIM(r) hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve edge loading conditions. The backing and the cup liner were cut with a diamond saw, in order to avoid neck-head impingement and dislocation in case of high cup abduction angles (Figure1). The head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. The motion was along the edge. Tests were conducted under lubricated conditions with 25% bovine serum without and with the addition of a 3. rd. body alumina ceramic particle (200 μm thickness and 2 mm length). Before hand, engineering blue was used in order to analyze the contact area and to determine whether edge loading was achieved. RESULTS. Edge loading was obtained. In-vitro, no squeaking occurred under edge loading conditions. However, with the addition of an alumina ceramic 3. rd. body particle in the contact region squeaking was obtained at the beginning of the tests and stopped after ∼20 seconds (dominant frequency 2.6 kHz). In-vivo, recordings had a dominant frequency ranging between 2.2 and 2.4 kHz. DISCUSSION. For the first time, squeaking was reproduced in vitro under lubricated conditions. In-vitro noises followed edge loading and 3. rd. body particles and despite, the severe conditions, squeaking was intermittent and difficult to reproduce. However, squeaking is probably more difficult to reproduce because the cup was cut and the head was fixed in the simulator, preventing vibration to occur. Squeaking noises of a similar frequency were recorded in-vitro and in-vivo. The lower frequency of squeaking recorded in-vivo, demonstrates a potential damping effect of the soft tissues. Therefore, the squeaking in the patients was probably related to the bearing surfaces and modified lubrication conditions that may be due to edge loading. Varnum et al reported recently (3) that all the revised squeaking patients had a neck-cup impingement with metal 3. rd. body particles. These metallic wear particles may generate squeaking as shown in vitro. However, a larger cohort of squeaking patients is needed to confirm these results


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 46 - 46
1 Oct 2014
Deep K Siramanakul C Mahajan V
Full Access

The problem associated with ceramic on ceramic total hip replacement (THR) is audible noise. Squeaking is the most frequently documented sound. The incidence of squeaking has been reported to wide range from 0.7 to 20.9%. Nevertheless there is no study to investigate on incidence of noise in computer assisted THR with ceramic on ceramic bearing. The purpose of this study was to determine the incidence and risks factors associated with noise. We retrospectively reviewed 200 patients (202 hips) whom performed computer assisted THR (Orthopilot, B. Braun, Tuttlingen, Germany) with ceramic on ceramic bearing between March 2009 and August 2012. All procedures underwent uncemented THR with posterior approach by single surgeon. All hips implanted with PLASMACUP and EXIA femoral stem (B. Braun, Tuttlingen, Germany). All cases used BIOLOX DELTA (Ceramtec, AG, Plochingen, Germany) ceramic liner and head. The incidence and type of noise were interviewed by telephone using set of questionnaire. Patient's age, weight, height, body mass index, acetabular cup size, femoral offset size determined from medical record for comparing between silent hips and noisy hips. The acetabular inclination angle, acetabular anteversion angle, femoral offset, hip offset were reviewed to compare difference between silent hips and noisy hips. The audible noise was reported for 13 hips (6.44%). 5 patients (5 hips) reported click (2.47%) and 8 patients (8 hips) squeaked (3.97%). The mean time to first occurrence of click was 13.4 months and squeak was 7.4 months after surgery. Most common frequency of click was less than weekly (60%) and squeak was 1–4 times per week (50%). Most common activity associated with noise was bending; 40% in click and 75% in squeaking. No patients complained for pain or social problem. Moreover, no patient underwent any intervention for the noise. The noise had not self-resolved in any of the patients at last follow up. Age, weight, height and BMI showed no statistically significant difference between silent hips and click hips. In addition, there was also same result between silent hips and squeaking hips. Acetabular cup insert size and femoral offset stem size the results showed that there was no statistically significant difference between silent hips and click hips, also with squeaking hips. Acetabular inclination, angle acetabular anteversion angle, femoral offset, hip offset the results shown that only acetabular anteversion angle differed significantly between silent hips (19.94±7.78 degree) and squeaking hips (13.46±5.54 degree). The results can conclude that incidence of noise after ceramic on ceramic THR with navigation was 6.44 %. Squeaking incidence was 3.97% and click incidence was 2.47%. The only associated squeaking risk factor was cup anteversion angle. In this study, squeaking hip had cup anteversion angle significant less than silent hip


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2015
Barrack R
Full Access

The use of hard-on-hard bearings, including ceramics peaked in the mid 2000's and has seen rapid decline since that time. Ceramics are not new to the market place but have had a 40 year history outside the U.S. The basis for renewed enthusiasm for ceramics included improved manufacturing, improved taper tolerances, higher strength, and lower wear. In spite of the major improvements concerns have been expressed with new generation ceramics by the experts and thought leaders in the field. The major concerns included complications related to modularity, continued problems with fracture and consequences of fracture, limited surgical options, and squeaking and impingement. The conclusion of one review article was that “although ceramics show promise as a lower wear articulation, manufacturing and design modifications and improvements will continue in an attempt to address the substantial concerns that persist”. Modifications have indeed occurred. The question is rather all of these concerns have been addressed and the answer is no. One proposed solution was a hybrid material of Alumina and Zirconia (Delta Ceramic). The advantages included higher strength, lower wear, more options and possibly less squeaking. Unfortunately the modest material improvements did not begin to overcome the obstacles to adopting this technology. High on this list is the problem with cost with the current health care environment unwilling to pay for expensive new technology that does not have proven value. A 2nd major issue is new technology must account for variability in surgeon performance in maximising margin for error. The medical legal environment is unforgiving of failure of new unproven options. Most of the old issues with ceramics have not been completely resolved. Delta Ceramic in particular, has increased cost with no demonstrated benefit. A major problem is there is no known problem with metal or ceramic against cross-linked polyethylene bearing in terms of wear or osteolysis in the 10–15 year time frame. Among all the bearing articulations, metal-on-cross-linked performs the best. The persistent vexing problems with ceramics include impingement, liner breakage, and squeaking. Ceramic components do not tolerate component malposition which increases wear and squeaking. The problem is that a substantial percentage of hip replacements are put in outside of the ideal radiographic zone even at specialty centers. Breakage continues to be a problem especially with liners. There is also a need for complete rim exposure for concentric placement with impaction of liners which makes ceramics less compatible with small incision surgery. The problem of squeaking has not been solved by Delta Ceramic. Originally a case report appeared in the literature of squeaking with Delta Ceramic. Since that time a large scale study has showed that only 69% of Delta Ceramic hips were silent with up to 13% being associated with reproducible squeaking. While a new generation of ceramics are better than the earlier generation and have lowered the fracture risk and increased intraoperative options, the current generation ceramics still provide far fewer options than a standard metal-on-cross-linked total hip. The current generation metal-on-cross-linked total hips have 10–15 year results that cannot be improved upon in terms of wear and osteolysis. Other unsolved problems include breaking, chipping and squeaking. Ceramic-on-ceramic is less tolerant of suboptimal position which leads to impingement, edge loading, and an increased incidence of squeaking. Until all of these problems are successfully addressed, ceramic-on-ceramic cannot be advocated for widespread use


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 91 - 91
1 May 2019
MacDonald S
Full Access

At the present time, there is no bearing in total hip arthroplasty that a surgeon can present to a younger and/or more active patient as being the bearing that will necessarily last them a lifetime. This is the driver to offering alternative bearings (crosslinked polyethylene with either a CoCr or ceramic head, resurfacings, and ceramic-on-ceramic) to patients. Each of these bearings has pros and cons, and none has emerged as the clear victor in the ongoing debate. Ceramic-on-ceramic (CoC) bearings have been available for decades. Earlier generation CoC bearings did encounter problems with rare fractures, however, with a greater understanding and improvement in the material, the fracture incidence has been significantly reduced. However, what has emerged in the past few years is an increasing reporting of significant squeaking. The incidence of squeaking, reported in the literature in various series, has varied from less than 1% to over 20%, depending on the definition used. The primary reasons that ceramic-on-ceramic is not truly the articulation of choice for younger patients are: 1) There is absolutely no evidence that this bearing has a lower revision rate. Data from the Australian joint registry actually shows that at 15 years it has a significantly increased rate of revision (7.2%) compared with using a highly crosslinked liner with either a ceramic (5.1%) or a CoCr (6.3%) head; 2) This bearing is by far the most costly bearing on the market. In 2017 with significant constraints on health care systems across the globe, this is a significant concern; 3) This bearing has unique complications including squeaking and both liner and head fracturing. While ceramic-on-ceramic can be considered a viable alternative bearing in total hip arthroplasty, it can be in no way considered the articulation of longevity for the younger patient


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 236 - 236
1 Sep 2012
Queiroz M Barros F Daniachi D Polesello G Guimarães R Ricioli W Ono N Honda E
Full Access

Introduction. One of the most common complications of ceramic on ceramic hip replacement is squeaking. The association of Accolade stem and Trident acetabular system has been reported to have squeaking incidence of up to 35,6%. There is doubt if this phenomenon occurs due to: the stem titanium alloy, the V40 femoral neck, the recessed liner of the trident cup or even the mal-seating of the trident insert on the cup. Objectives. Primary: The purpose of the present study was to determine the incidence of squeaking in association with the use of Exeter stem and Trident ceramic acetabular system. Secondary: Analysis of the correlation of the cup abduction angle and squeaking. Methods. During the period from March 2004 to December 2008, two surgeons performed 87 total hip arthroplasties in 77 patients with use of a ceramic-on-ceramic bearing (Exeter stem, alumina head, Trident ceramic acetabular system). Seventy six patients (86 THA) were available for review after at least 18 months follow-up. The incidence of squeaking and other noises was analyzed. Cup abduction angle was measured. The Pearson correlation coefficient was used to determine if a correlation existed between the cup abduction angle and squeaking. Results. The incidence of squeaking was 2,63% (2 patients). Both patients reported a “click” noise in hyperextension of the hip. The mean abduction angle was 44 degress (35–60), and 48 degrees (46 and 50) on the squeaking group. There was no statistically significant difference in the in the mean cup inclination between squeaky and quiet hips. Conclusion. The incidence of squeaking in association with the use of Exeter stem and Trident ceramic acetabular system was 2,63%. There was no correlation of the cup abduction angle and squeaking


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 169
1 Mar 2010
Ecker T Robbins C van Flandern G Patch D Steppacher S Bierbaum B Murphy S
Full Access

Alumina ceramic-ceramic bearings have the benefit of very low wear and studies showing the complete absence of osteolysis during the first decade of close study. However, good results depend on several critical factors including surgical exposure, surgical technique, component placement, and choice of component design. The following abstract discusses our experience with several of these factors. Initially, there were concerns that the use of ceramic-ceramic bearings would lead to a higher incidence of hip dislocation since the bearings have fewer femoral head-length choices and the absence of lipped-liners. In our prospective study of 418 hips the incidence of hip dislocation at 1 to 10 year followup is 0.5% (2/418). This experience suggests that the use of alumina ceramic-ceramic bearings is not associated with an increased incidence of dislocation. More recently, concerns about squeaking of alumina ceramic-ceramic bearings have been reported, particularly from centers in the United States. To investigate this issue, we reviewed information on 1275 consecutive revision THAs and 1039 consecutive primary ceramic-ceramic THA that had been performed at two institutions between 1996 and 2007. To identify the influence of the implant design on the incidence of squeaking we divided the primary hips into three groups with group 1: flush mounted ceramic liner; group 2a: recessed ceramic liner mated with a stem made of TiAlV; and group 2b: recessed ceramic liner mated with a stem made of a beta titanium alloy comprised of 12% molybdenum, 6% Zirconium, and 2% Iron. Analysis of the 1275 revision hips revealed 5 alumina ceramic-ceramic hips in patients who complained of squeaking or grinding. All 5 hips were designs that included a ceramic liner that was recessed inside of an elevated metal rim. All 5 hips also demonstrated metallosis at the time of revision. In primary THA, Group 2b had statistically significantly more squeaking (9 of 118) than group 2a (10 of 321) which had statistically significantly more squeaking than group 1 (6 of 700). In addition, the severity of squeaking between the groups was qualitatively different. Patients in Group 2b who complained of squeaking would often experience squeaking frequently throughout the day and could be demonstrated in the physician’s office. By contrast, patients in Group 1 who noted squeaking stated that the hip squeaked once a day to once a year. No patient in Group 1 complained of frequent squeaking or could demonstrate squeaking in the physicians’ office. Further, joint fluid analysis from a patient in Group 2b who complained of squeaking revealed metal from both the femoral (Molybdenum) and acetabular (Aluminum) components. As reported in another abstract at this meeting, 10 year survivorship of flush-mounted alumina ceramic-ceramic THA is 98.4% (95% confidence interval 97.1–100%) and no patient in that prospective clinical studies demonstrated radiographic evidence of osteolysis or wear. These experiences demonstrate that THA using alumina ceramic-ceramic is extremely reliable with low revision and dislocation rates and an absence of osteolysis. Significant squeaking is not associated with flush-mounted alumina ceramic liners and is clearly associated with elevated metal rims and metallosis. Finally, squeaking is statistically significantly associated with femoral components made of a beta titanium alloy consisting of Titanium, Molybdenum, Aluminum, and Iron


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 529 - 529
1 Oct 2010
Sariali E Fisher J Jin Z Stewart T
Full Access

Introduction: Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise. Methods: Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident. ®. , Stryker. ®. ) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster. ®. ). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec. ®. ) 32 mm diameter (Ceramconcept. ®. ) components were tested using a PROSIM. ®. hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve edge loading conditions. The backing and the cup liner were cut with a diamond saw, in order to avoid neck-head impingement and dislocation in case of high cup abduction angles. The head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. The motion was along the edge. Tests were conducted under lubricated conditions with 25% bovine serum without and with the addition of a 3rd body alumina ceramic particle (200 μm thickness and 2 mm length). Results: Edge loading was obtained incompletely. In-vitro, no squeaking occurred under edge loading conditions. However, with the addition of an alumina ceramic 3rd body particle in the contact region, squeaking was obtained at the beginning of the tests and stopped after ~20 seconds (dominant frequency 2.6 kHz). In-vivo, recordings had a dominant frequency ranging between 2.2 and 2.4 kHz. Discussion: For the first time, squeaking was reproduced in vitro under lubricated conditions. In-vitro noises followed edge loading and 3rd body particles and despite, the severe conditions, squeaking was intermittent and difficult to reproduce. However, squeaking is probably more difficult to reproduce because the cup was cut and the head was fixed in the simulator, preventing vibration to occur. Squeaking noises of a similar frequency were recorded in-vitro and in-vivo. The lower frequency of squeaking recorded in-vivo, demonstrates a potential damping effect of the soft tissues. Therefore, the squeaking in the patients was probably related to the bearing surfaces and modified lubrication conditions that may be due to edge loading. The determined values of frequencies may help to analyze the squeaking patients in order to determine the mechanism generating the sound


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 66 - 66
1 Jan 2017
Baruffaldi F Mecca R Stea S Beraudi A Bordini B Amabile M Sudanese A Toni A
Full Access

Ceramic-on-ceramic (CoC) total hip arthroplasty (THA) can produce articular noise during the normal activities, generating discomfort to the patient. THA noise has to be investigated also as a potential predictor and a clinical sign of prosthetic failure. An observational study has been carried out to characterize the noise in CoC cementless THA, and to analyze the related factors. A total of 46 patients with noisy hip have been enrolled in 38 months, within the follow-up protocol normally applied for the early diagnosis of ceramic liner fracture [1]. Noise recording was based on a high-quality audible recorder (mod. LS 3, Olympus, Japan) and a portable ultrasonic transducer (mod USB AE 1ch, PAC, USA). The sensors for noise recording were applied to the hip of the patient during a sequence of repeatable motorial activities (forward and backward walking, squat, sit in a chair, flexion and extension of the leg). Sessions were also video-recorded to associate the noise emission to the specific movements. Each noise event was initially identified by the operator and therefore classified by comparison to the spectral characteristics (duration, intensity and frequency) of the main noise types. Number and spectral characteristics of noise events were obtained and correlated to the factors describing the clinical status of the patient, the surgical approach, the prosthetic device implanted. The study investigated also the noise as a sign of implant failure, by comparison with the total number of implants failed in the cohort during the study. We observed three types of noise with the main spectral characteristics in agreement to the literature: clicking, squeaking and popping. Among the identified types of noise, squeaking showed the longest duration and the highest amplitude. The 63% of hip presented the emission of just one type of noise, while the remaining a mix of types. The movement with the highest presence of noise was walking, followed by squat. Correlation was found between the noise type and the dimension of the ceramic head (p<0.001), with the sizes of 32 mm more affected by squeaking that the smaller one. Squeaking appeared before during the follow-up than the other types of noise. The 35% (16/46) of the noisy hips were revised during the study. Among the revised hips, the 81% (13/16) were affected by impingement and/or severe damage of the prosthetic components. The antiversion of the cup (p=0.008), the presence of debris in the synovial fluid (p=0.021) and the average frequency of squeaking (p=0.006) were significant predictors for the revision, but it has to be mentioned that the squeaking data was obtained on a small subset of revised patients. Ultrasonic analysis did not show significant correlations. The study presented and validated an experimental procedure to analyze noisy hips in clinical trials. Noise is confirmed to be a significant parameter in the follow-up evaluation of ceramic THA