Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 22 - 23
1 Jan 2019
Kayani B Konan S Tahmassebi J Rowan FE Haddad FS


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2021
De Grave PW Luyckx T Claeys K Gunst P
Full Access

Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable linear regression analyses were performed to determine associations of OKS and satisfaction with 6 variables (age, sex, body mass index (BMI), preoperative hip knee ankle (HKA) angle, preoperative OKS, alignment technique). Results. The iKA and aMA techniques yielded comparable outcome scores (p=0.069), with OKS respectively 44.6±3.5 and 42.2±6.3. VAS Satisfaction was better (p=0.012) with iKA (9.2±0.8) compared to aMA (8.5±1.3). The number of patients that achieved OKS and satisfaction PASS thresholds was significantly higher (p=0.049 and p=0.003, respectively) using iKA (98% and 80%) compared to aMA (85% and 48%). Knees with preoperative varus deformity, achieved significantly (p=0.025) better OKS using iKA (45.4±2.0) compared to aMA (41.4±6.8). Multivariable analyses confirmed better OKS (β=3.1; p=0.007) and satisfaction (β=0.73; p=0.005) with iKA. Conclusions. The results of this study suggest that iKA and aMA grant comparable clinical outcomes at 12-months follow-up, though a greater proportion of knees operated by iKA achieved the PASS thresholds for OKS and satisfaction. Notably. in knees with preoperative varus deformity, iKA yielded significantly better OKS and satisfaction than aMA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 68 - 68
1 Mar 2013
Jassim S Marson N Benjamin-Laing H Douglas S Haddad F
Full Access

Introduction. Technology in Orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Materials & Methods. In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of Navigation and Robotics in Orthopaedic surgery. Participation in the survey was voluntary. Results. 98 patients volunteered to participate in the survey, mean age 56.2 years (range 19–88; 52 female, 46 male). 40% of patients thought more than 30% of NHS Orthopaedic operations involved navigation or robotics; 80% believed this was the same level or less than the private sector. A third believed most of an operation could be performed independently by a robotic/navigation system. Amongst perceived benefits of navigation/robotic surgery was more accurate surgery(47%), quicker surgery (50%) and making the surgeon's job easier (52%). 69% believed navigation/robotics was more expensive and 20% believed it held no benefit against conventional surgery, with only 9% believing it led to longer surgery. Almost 50% would not mind at least some of their operation being performed with use of robotics/navigation, with a significantly greater proportion of these coming from patients aged under 50 years. Conclusions. Although few patients were familiar with this new technology, there appeared to be a strong consensus it was quicker and more accurate than conventional surgery. Many patients appear to believe navigation and robotics in Orthopaedic surgery is largely the preserve of the private sector. This study demonstrates public knowledge of such new technologies is limited and a need to inform patients of the relative merits and drawbacks of such surgery prior to their more widespread implementation


Bone & Joint 360
Vol. 4, Issue 5 | Pages 2 - 7
1 Oct 2015
Clark GW Wood DJ

The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 32 - 32
1 Feb 2017
Netravali N Jamieson R
Full Access

Background

Despite the success of total hip arthroplasty (THA), there are still challenges including restoration of leg length, offset, and femoral version. The Tsolution One combines preoperative planning with an active robotic system to assist in femoral canal preparation during a THA.

Purpose of Study

To demonstrate the use of an active robotic system in femoral implant placement and determine the accuracy of femoral implant position. This was evaluated in a cadaveric study.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 452 - 452
1 Nov 2011
Scuderi G
Full Access

Surgical instrumentation for total knee arthroplasty has improved the accuracy, reproducibility and reliability of the procedure. In recent years, minimally invasive surgery introduced instrumentation that was reduced in size to fit within the smaller operative field; with this move the impact and influence of technology became proportionately larger. The introduction of computer navigation is an attempt to improve the surgeon’s visibility in a limited operative field, improve the position of the resection guides, and ultimately the position of the final components.

While it may be appealing to rely on computer navigation to perform a TKA, it is not artificial intelligence and does not make any of the surgical decisions. The procedure still is surgeon directed with navigation serving as a tool of confirmation with the potential for improvements in surgical accuracy and reproducibility. The accuracy of TKA has always been dependent upon the surgeon’s judgment, experience, ability to integrate images, utilize pre-operative radiographs, knowledge of anatomic landmarks, knowledge of knee kinematics, and hand eye co-ordination. Recent advances in medical imaging, computer vision and patient specific instrumentation have provided enabling technologies, which in a synergistic manner optimize the accurate performance of the surgery. The successful use of this technology requires that it not replace the surgeon, but support the surgeon with enhanced intra-operative feedback, integration of pre-operative and intra-operative information, and visual dexterity during the procedure. In developing smart tools or robotic systems, the technology must be: safe; accurate; compatible with the operative field in size and shape, as well be able to be sterilized; and must show measurable benefits such as reduced operative time, reduced surgical trauma and improved clinical outcomes. Advocates believe this is attainable and robotic assisted TKA can achieve levels of accuracy, precision and safety not accomplished by computer assisted surgery.

Smart instruments and robotic surgery are helping us take the next step into the operating room of the future. The role of robots in the operating room has the potential to increase as technology improves and appropriate applications are defined. Joint replacement arthroplasty may benefit the most due to the need for high precision in placing instruments, aligning the limb and implanting components. In addition, this technology will reduce the number of instruments needed for the procedure potentially further improving efficiency in the operating room. As technology advances, robots may be commonplace in the surgical theater and potentially transform the way total knee arthroplasty is done in the future. Robotic surgery and smart tools are new innovative technologies and it will remain to be seen if history will look on its development as a profound improvement in surgical technique or a bump on the road to something more important.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 555 - 555
1 Aug 2008
Bauer A
Full Access

Robotic technology in adult reconstruction – initially the placement of the stem during THR – was introduced in the early nineties of last century, starting in the US. The underlying technology dated back to the year 1986. Because of regulatory restrictions the technology could not spread in the US, but was exported to Europe in 1994. There the technology – primarily distributed in Germany – had a great success and by the year 2000 roughly 50 centers were using Robodoc – the first robot on the market – and a very similar German competitor’s product, CASPAR.

The initial robot was a crude machine, basically the unchanged beta version. Cumbersome fixation, a registration process using three fiducials, the requirement for second surgery to place the fiducials, and last but not least raw and hardly elaborated cutting files made surgery with Robodoc a demanding undertaking. Yet feedback from the surgeons, sometimes vigorously expressed during regular user meetings, let to continuous evolution of the system and resulted in an advanced and stable technology. Also training – with important input from the already experienced sites – improved significantly, which can best be demonstrated by procedure time for first surgery: in Frankfurt 1994 roughly four hours, while today first surgeries at new sites rarely exceed two hours. Further applications – revision surgery, total knee replacement – helped to justify the significant investment into the system.

While robotic technology underwent evolution, other related technologies were developed and entered the market. Main products were the navigation systems, which initially were developed for neurosurgery and spine surgery and which, due to easier handling and lower costs, found more acceptance on behalf of the surgeons. Although the navigation technology in some regards is a step back from the robotic technology, it appealed for just that reason: the surgeon stays in the loop. The surgeon uses the traditional instruments, and the navigator helps him to achieve precision in reaming or placement of implants. In orthopaedic surgery navigators became very popular in TKR, but also in THR.

Another development, completely unrelated to the mentioned technology, presented a new challenge: minimal invasive surgery. While in knee surgery the introduction of arthroscopy in the late seventies already proved the feasibility of minimal invasive techniques, adult reconstruction remained the domain of sometimes aggressive and robust surgery. Only recently minimal invasive procedures were introduced and standardized for a couple of applications. It is important to stress the fact that the term ‘minimal invasive’ did not relate to the size of skin incision only, but to the overall degree of soft tissue damage necessary to prepare for and place the implants. Some companies now offer new instruments allowing for very minimal incisions and reduced soft tissue compromise. In contrast to this development robot assisted surgery remained – in spite of numerous improvements – a rather invasive piece of surgery. These separate developments – navigators and minimal invasive surgery – made robot assisted joint surgery in the eyes of many potential users a rather outdated, superfluous and expensive type of technology. It is therefore time to revisit the original intentions that let to the development of robot assisted surgery.

The original ideas were sponsored by veterinary surgeons specializing in cementless THR for dogs. They experimented with custom implants, but they identified two fields of concerns: fractures and poor placement. Both problems are – still – common in human THR. Robot-assisted surgery was supposed to mainly address these problems. Another asset of robot-assisted surgery is seen in machine milling, which was invented as part of the robotic procedure and which turned out to be superior to conventional reaming.

The published results of robot-assisted THR (i.e. Nishihara et al, 2006) prove that these requirements were met. In our own series in Spain we had no fracture and every single implant was seated according to the preoperative plan. Animal experiments allowing for histological examination of the bone-implant interface showed the uncompromised cancellous scaffolding supporting the implant, while hand-reamed interfaces showed signs of destruction and atrophy.

On the other hands there are concerns that current minimal invasive approaches do cause problems in these regards: control of position is mainly feasible by use of intraoperative x-ray, and fractures do occur.

Therefore robot-assisted surgery seems to be the ideal complement for the minimal invasive approach. The deficits of MIS regarding orientation and visualization of the surgical object can be compensated by the robots proven ability to execute preoperative established plans. The challenge is the current invasiveness of robotic surgery, which – as primary tests and studies show – can be easily accounted for.

In conclusion there is an ever increasing role for robot-assisted surgery in adult reconstruction. It is up to the surgeons to define the requirements and ask for specifications that will meet their and the patient’s expectations regarding the degree of invasiveness involved.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 252 - 252
1 Dec 2013
Buechel F
Full Access

Introduction:

Unicompartmental knee arthroplasty has been shown to have lower morbidity, quicker rehabilitation and more normal kinematics compared to conventional TKA, but subchondral defects, or severe osteoarthritic changes, of the medial compartment may complicate component positioning. Successful UKA in these patients requires proper planning and exact placement of the components to ensure adequate and stable fixation and proper postoperative kinematics. This study presents a series of three patients with spontaneous osteonecrosis of the knee receiving a UKA with CT-based haptic robotic guidance.

Methods:

This series includes two females and one male with spontaneous osteonecrosis of the medial femoral condyle who underwent outpatient mini-incision medial UKA using the MAKO Surgical Rio Robotic Arm System. Pre-operatively all patients were found to have pain with weight bearing that would not improve despite non-arthroplasty treatment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 88 - 88
1 Aug 2013
Banger M Rowe P
Full Access

There is an increasing prevalence of haptic devices in many engineering fields, especially in medicine and specifically in surgery. The stereotactic haptic boundaries used in Computer Aided Orthopaedic Surgery Unicomparmental Knee Arthroplasty (CAOS UKA) systems for assistive milling control can lead to an increase in the force required to manipulate the device; this study presented here has seen a several fold increase in peak forces between haptic and non-haptic conditions of a semi-active preoperative image system.

Orthopaedic Arthroplasty surgeons are required to apply forces ranging from large gripping forces to small forces for delicate manipulation of tools and through a large range of postures. There is also a need for surgeons to move around and position themselves to gain line of sight with the object of interest and to operate while wearing additional clothing such as the protective headwear and double gloves. These factors further complicate comparison with other ergonomic studies of other robotics systems. While robotics has been implemented to reduce fatigue in surgery one area of concern in CAOS is localised user muscle fatigue in high volume use.

In order to create the conditions necessary for the generation of fatigue in a realistic user experience, but in the time available for the participants, an extended period of controlled and prolonged cutting and manipulation of the robotic arm was needed. This pragmatic test requirement makes the test conditions slightly artificial but does indicate areas of high potential for fatigue when interacting with the system in high volume instances.

The surgeon-robotic system interaction was captured using 3 dimensional motion analysis and a force transducer embedded in the end effector of the robotic arm and modelled using an existing upper body model in Anybody software. The kinematic and force information allowed initial calculations of the interaction between the user and the Robotic system. Validation of the model was conducted using Electromyography assessment of activity and fatigue. Optimisation of the model sought to create an efficient cutting regime to reduce cutting time with reduced muscle force in an attempt to reduce users discomfort/fatigue while taking into account anthropometric variations in the users and minimising overall energy requirements, burr path length and maximum muscle force.

From the assessment of a small group of three surgeons with experience of the Robotic system there was little to no experience of above normal localised fatigue during small volume use of the system. Observation of these surgeons operating the robot state otherwise with examples of reactions to discomfort. There is also anecdotal evidence that fatigue becomes more problematic in higher volume work loads.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 557 - 557
1 Aug 2008
Wahrburg J
Full Access

Robotic systems for computer assisted surgery have gained a lot of initial interest and several systems to support surgical inventions have been developed over the past ten years. While almost all systems are tailored to specific applications, the technology used may be divided into different groups. One part of the proposed solutions is essentially based on industrial robots, whereas the part relies on specific designs for medical applications. A particular approach which will not be discussed in this contribution is represented by tele-manipulator systems like the daVinci system from Intuitive Surgical Inc. for cardiac applications, and robots for endoscope guidance in abdominal surgery. The operation of these systems is controlled manually by the surgeon based on the visual information of the operating area which he gets by endoscopic cameras.

Robotic application in computer assisted surgery, in contrast to tele-manipulator approaches, is based on pre-operative planning and intra-operative registration of the patient anatomy. They principally offer additional advantages compared to pure navigation systems, such as

No problems due to tremor or unintentional slipping of the tool. Surgery will exactly achieve pre-operatively planned targets, resulting in very good reproducibility

Precise drilling or reaming. Overcome ergonomic problems, like difficult hand-eye-coordination or frequent changes of viewing the direction

Definition of “safe areas” – robot will not move tool beyond

Use of novel tool systems which cannot be guided manually

Essential issues: operating mode & “added value” of a robot

It is a major challenge for new solutions of surgical robot system to exploit this potential while avoiding the drawbacks some existing designs which have not gained wider clinical acceptance. The “added value” of robotic systems must be obvious. Important features to achieve this objectives include interactive operating modes which turn the robot into a powerful and versatile assistance system instead of fully automatic system operation.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims

Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation.

Methods

Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 715 - 720
23 Aug 2024
Shen TS Cheng R Chiu Y McLawhorn AS Figgie MP Westrich GH

Aims

Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used.

Methods

We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 13 - 18
5 Jan 2023
Walgrave S Oussedik S

Abstract

Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan.

Cite this article: Bone Jt Open 2023;4(1):13–18.


Bone & Joint Open
Vol. 3, Issue 7 | Pages 589 - 595
1 Jul 2022
Joo PY Chen AF Richards J Law TY Taylor K Marchand K Clark G Collopy D Marchand RC Roche M Mont MA Malkani AL

Aims

The aim of this study was to report patient and clinical outcomes following robotic-assisted total knee arthroplasty (RA-TKA) at multiple institutions with a minimum two-year follow-up.

Methods

This was a multicentre registry study from October 2016 to June 2021 that included 861 primary RA-TKA patients who completed at least one pre- and postoperative patient-reported outcome measure (PROM) questionnaire, including Forgotten Joint Score (FJS), Knee Injury and Osteoarthritis Outcomes Score for Joint Replacement (KOOS JR), and pain out of 100 points. The mean age was 67 years (35 to 86), 452 were male (53%), mean BMI was 31.5 kg/m2 (19 to 58), and 553 (64%) cemented and 308 (36%) cementless implants.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal.

There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced.

Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described.

The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery.

Cite this article: Bone Joint J 2020;102-B(5):568–572.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported.

Cite this article: Bone Joint J 2020;102-B(4):407–413.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 319 - 328
1 Mar 2020
St Mart J de Steiger RN Cuthbert A Donnelly W

Aim

There has been a significant reduction in unicompartmental knee arthroplasty (UKA) procedures recorded in Australia. This follows several national joint registry studies documenting high UKA revision rates when compared to total knee arthroplasty (TKA). With the recent introduction of robotically assisted UKA procedures, it is hoped that outcomes improve. This study examines the cumulative revision rate of UKA procedures implanted with a newly introduced robotic system and compares the results to one of the best performing non-robotically assisted UKA prostheses, as well as all other non-robotically assisted UKA procedures.

Methods

Data from the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) for all UKA procedures performed for osteoarthritis (OA) between 2015 and 2018 were analyzed. Procedures using the Restoris MCK UKA prosthesis implanted using the Mako Robotic-Arm Assisted System were compared to non-robotically assisted Zimmer Unicompartmental High Flex Knee System (ZUK) UKA, a commonly used UKA with previously reported good outcomes and to all other non-robotically assisted UKA procedures using Cox proportional hazard ratios (HRs) and Kaplan-Meier estimates of survivorship.