Advertisement for orthosearch.org.uk
Results 1 - 20 of 254
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 98 - 98
1 Jul 2022
Vidakovic H Meen R Ohly N
Full Access

Abstract. Introduction. Mako robotic assisted knee arthroplasty requires a planning CT scan within 8 weeks of surgery according to the supplier's protocol. This is often impractical, therefore we evaluated whether CT scans remain valid for an extended period. Methodology. Patients undergoing Mako partial (PKA) and total (TKA) knee arthroplasty were identified from our hospital database. The hospital PACS system was used to define the time interval between the initial planning CT scan and surgery, and whether further imaging was required prior to surgery. Results. 443 consecutive Mako cases (225 TKA and 218 PKA) were undertaken between November 2019 and December 2021 (33 cases to March 2020, and 410 cases from August 2020). CT scans were done within 8 weeks of surgery in 229 patients (51.7%); between 8 and 24 weeks in 148 patients (33.4%); between 24 and 48 weeks in 53 patients (12.0%); and more than 48 weeks in 13 patients (2.9%). Repeat pre-operative radiographs were done in the first 43 patients with a delay to surgery of more than 8 weeks following their CT scan. No gross anatomical changes were identified, and this practice was therefore discontinued. No patients required a repeat CT scan. There were no intra-operative registration errors in any patient in this series. Conclusion. Planning CT scans were valid for up to one year in a large series of patients undergoing Mako PKA and TKA. This may allow for more cost-effective use of resources, while minimising irradiation to patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective. Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants. Materials and Methods. Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy. Results. The surgery was precisely reproduced according to VSP and the deformities were successfully corrected in eight cases (3 genu varum in Blount disease, 2 coxa vara in pseudo achondroplasia, 1 SCFE, 1 missed Monteggia lesion and 1 post-traumatic forearm malunion deformity). In one case, a focal fibrocartilaginous dysplasia, the intraoperative intentional undersizing of the bone osteotomy produced an incomplete correction of a congenital forearm deformity. Conclusions. Our study describes the application of a safe, effective, user-friendly, VSP process in PO surgery. We are convinced that our study will stimulate the widespread adoption of this technological innovation in routine clinical practice for the treatment of rare congenital and post-traumatic limb deformities during childhood


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 76 - 76
1 Aug 2013
Franke J Vetter S Mühlhäuser I Grützner P von Recum J
Full Access

Background. Digital planning of implants in regard to position and size is done preoperatively in most cases. Intraoperative it can only be made by navigation systems. With the development of the VIPS-method (Virtual Implant Planning System) as an application for mobile C-arms, it is possible to do an intraoperative virtual planning of the screws near the joint in treatment of distal radius fractures by plating. Screw misplacement is a well known complication in the operative treatment of these fractures. The aim of this prospective randomised trial was to gain first clinical experiences and to compare VIPS with the conventional technique. The study hypothesis was that there will be less screw misplacement in the VIPS group. Methods. We included 40 patients with distal radius fractures type A3, C1 and C2 according to the AO-classification. In a pilot study the first 10 Patients were treated by the VIPS method to gain experience with VIPS in a clinical set-up. The results of the pilot-study are not part of this analysis. Then 15 Patients were web-based randomised into two groups. After diaphysial fixation of a 2.4 mm Variable Angle Two-Column Volar Distal Radius Plate and fracture reduction matching of a three-dimensional virtual plate to the two-dimensional image of the plate in the fluoroscopy shots in two plains was performed automatically in the VIPS group. The variable angle locking screws were planed in means of direction and length. Drilling was done by the use of the Universal Variable Angle Locking Drill Guide that was modified by laser marks at the rim of the cone to transfer the virtual planning. The drill guide enables drilling in a cone of 30°. In the control group the same implant was used in a conventional technique that means screw placement by the surgeon without digital planning. After implant placement an intraoperative three-dimensional scan was performed to check the position and length of the screws near the joint. OR- and fluoroscopy-time was documented. In addition the changes of misplaced screws were engaged. Results. In the VIPS group six A3-fractures, one C1-fracture and eight C2-fractures were included. In the control group six A3-fractures and nine C2-fractures were included. The intraoperative fluoroscopy time was 2.53 min (SD 1.44, range 1.27–7.14) in the VIPS group and 2.26 min (SD 0.51, range 1.55–3.39) in the control group (p=0.40). The OR-time was 53.33 min (SD 34.49, range 34–171) in the VIPS group and 42.27 min (SD 8.76, range 20–58) in the control group (p=0.23). In the VIPS group we changed three screws (two were too long, one was borderline near the joint) and two screws in the control group (one was too long, one was borderline near the joint) (p=0.24). Conclusions. The Virtual Implant Planning System is a reliable method that can be integrated easily in the workflow in treatment of distal radius fractures. There is a tendency that the virtual implant planning needs additional time, but there are no significant differences between the two groups. Further development is necessary to make the VIPS method beneficial


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims

Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach.

Methods

From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 441 - 441
1 Oct 2006
Harris S Barrett A Cobb J Baena FRY Jakopec M Gomes P Davies B
Full Access

Hip resurfacing has advantages over hip replacement for younger, more active patients. However, it requires that surgeons learn new techniques for correctly cutting bone and positioning the components. Pre-operative planning systems exist for conventional hip replacement. Planning software for hip resurfacing is described, with the resulting plans available as a visual aid during surgery, or transferred to the Acrobot. ®. Navigation system for intra-operative guidance. CT data is acquired from the top of the pelvis to immediately above the acetabulae in 4 mm slices, and from there down to just below the lesser trochanter in one mm slices. This keeps radiation doses low while providing high image quality in the important regions for planning. This is segmented semi-automatically, and bone surface models are generated. Frames of reference are generated for the pelvis and femur, and the acetabular and femoral head positions are computed relative to these. Prosthesis components are initially positioned and sized to match the computed anatomy. They can then be adjusted as required by the surgeon. While adjusting their positions, he is able to visualize their fit onto the bone to ensure good placement without problems such as femoral neck notching. Twenty one hip resurfacings have been planned including two navigated cases. In addition, visualization of hip geometry for osteotomy and impingement debridement has been performed on 14 cases, giving the surgeon a good understanding of hip geometry prior to surgery. Initial evidence indicates surgeons find the planner useful, particularly when the anatomy is not straightforward


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 102 - 102
23 Feb 2023
Campbell T Hill L Wong H Dow D Stevenson O Tay M Munro JT Young S Monk AP
Full Access

Contemporary indications for unicompartmental knee replacement (UKR) include bone on bone radiographic changes in the medial compartment with relatively preserved lateral and patellofemoral compartments. The role of MRI in identifying candidates for UKR is commonplace. The aim of this study was to assess the relationship between radiographic and MRI pre-operative grade and outcome following UKR.

A retrospective analysis of medial UKR patients from 2017 to 2021. Inclusion criteria were medial UKR for osteoarthritis with pre-operative and post-operative Oxford Knee Scores (OKS), pre-operative radiographs and MRI.

89 patients were included. Whilst all patients had grade 4 ICRS scores on MRI, 36/89 patients had grade 3 KL radiographic scores in the medial compartment, 50/89 had grade 4 KL scores on the medial compartment. Grade 3 KL with grade 4 IRCS medial compartment patients had a mean OKS change of 17.22 (Sd 9.190) meanwhile Grade 4 KL had a mean change of 17.54 (SD 9.001), with no statistical difference in the OKS change score following UKR between these two groups (p=0.873). Medial bone oedema was present in all but one patient. Whilst lateral compartment MRI ICRS scores ranged from 1 to 4 there was no association with MRI score of the lateral compartment and subsequent change in oxford score (P value 0.458). Patellofemoral Compartment (PFC) MRI ICRS ranged from 0 to 4. There was no association between PFC ICRS score and subsequent change in oxford knee score (P value .276)

Radiographs may under report severity of some medial sided knee osteoarthritis. We conclude that in patients with grade 3 KL score that would normally not be considered for UKR, pre-operative MRI might identify grade 4 ICRS scores and this subset of patients have equivalent outcomes to patients with radiographic Grade 4 KL medial compartment osteoarthritis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 140 - 140
1 May 2016
Lazennec J Tahar IN Folinais D
Full Access

Introduction. EOS® is a low dose imaging system which allows the acquisition of coupled AP and lateral high-definition images while the patient is in standing position. HipEos has been developped to perform pre-surgical planning including hip implants selection and virtual positioning in functional weight-bearing 3D. The software takes advantage of the real size 3D patient anatomical informations obtained from the EOS exam. The aim of this preliminary study on 30 consecutive THP patients was to analyze the data obtained from HipEos planning for acetabular and femoral parameters and to compare them with pre and post-operative measurements on standing EOS images. Material and methods. Full body images were used to detect spino-pelvic abnormalities (scoliosis, pelvic rotation) and lower limbs discrepancies. One surgeon performed all THP using the same type of cementless implants (anterior approach, lateral decubitus). The minimum delay for post-op EOS controls was 10 months. A simulation of HipEos planning was performed retrospectively in a blinded way by the same surgeon after the EOS controls. All measurements were realized by an independent observer. Comparisons were done between pre and post-op status and the “ideal planning” taking in account the parameters for the restitution of joint offset and femur and global limb lengths according to the size of the selected implants. Regarding cup anteversion, the data included the anatomical anteversion (with reference to the anterior pelvic plane APP) and functionnal anteversion (according to the horizontal transverse plane in standing position). Results. The difference between pre-op and post-op APP angles is not statistically significant (p = 0.85), likewise for the sacral slope (p = 0.3). Thus, there has been no change in the orientation of the pelvis after THP. Comparing the two hips on post-op EOS data shows that the difference in femoral offset is not statistically significant (p = 0.76). However, the femoral length is statistically different (p <0.05) (mean 4mm, 0–12mm). The difference for femoral offset between HipEOS planning and post-op EOS data is not statistically significant (p = 0.58). However, the mean difference is significant (p <0.05) for femur length (5mm), inclination (5°) and anteversion of the cup. The mean post-op anatomic anteversion measured in the APP is 27°, whereas it is 11° with HipEOS planning. The mean functional anteversion of the cup on standing post-op EOS data is 35° while planning it is 17°. Otherwise, differences in femoral anteversion are not significant. Conclusion. The planning tools currently available include only the local anatomy of the hip for THP adjustment. This software integrates weight-bearing position, which allows to consider the impact of spine deformities and length discrepancies. This preliminary study is only retrospective, but it highlights the potential interest this “global planning” particularly for the optimization of acetabular anteversion and length adjustment according to pelvic tilt. Planning using the standing lateral view is interesting not only for visualization of the sagittal curvature of the femur and the detection of potential difficulties, but also for the visual data provided on the sagittal orientation of the cup


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 360 - 360
1 Mar 2004
Jolles B Clerc T Farina P Rubin P Leyvraz P
Full Access

Aims: All health care systems in the developed world are facing everincreasing health care costs and faced with this prospect, governments and other health care payers seek greater beneþts from existing health resources. An inexpensive alternative without excessive technical demands on physicians or operating room personnel, is two-dimensional (2D) computerassisted preoperative planning. The purpose of the study was to clinically validate the SYMBIOS X-Rays Preoperative Planning software for preoperative planning of cementless total hip replacement. Methods: For each of the thirty patients with osteoarthritis who underwent a total hip arthroplasty using an uncemented anatomic stem, the manual preoperative planning of the surgeon, the 2D computer-assisted one and the result after the real implantation were compared by an independent observer. Comparisons were based on stem and neck sizes as well as stem and rotation center position, using the deþnitive implantation as the reference standard. Results: There were no statistical differences between the results of the manual and 2D computer-assisted preoperative plans in terms of stem size and neck length (< 1 size) as well as for rotation center positioning (< 5mm) when compared to the deþnitive implantation. Conclusion: Two-dimensional computer-assisted preoperative planning seems to provide results as good as those of the manual procedure with the great advantage of allowing the surgeon to simulate various stem designs and to take into account biomechanical criteria


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 110 - 110
11 Apr 2023
Lee K Lin J Lynch J Smith P
Full Access

Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve communication among pelvic surgeons and inform treatment strategy.

300 Pelvic CT scans from skeletally mature trauma patients that did not have pre-existing posterior pelvic pathology were identified. Axial and coronal transosseous corridor widths at both S1 and S2 were recorded. Additionally, the S1 lateral mass angle were also calculated. Pelvises were classified based upon the sacroiliac joint (SIJ) height using the midpoint of the anterior cortex of L5 as a reference point. Four distinct types could be identified:

Type-A – SIJ height is above the midpoint of the anterior cortex of the L5 vertebra.

Type-B – SIJ height is between the midpoint and the lowest point of the anterior cortex of the L5 vertebra.

Type-C – SIJ height is below the lowest point of the anterior cortex of the L5 vertebra.

Type-D – a subgroup for those with a lumbosacral transitional vertebra, in particular a sacralised L5.

Differences in transosseous corridor widths and lateral mass angles between classification types were assessed using two-way ANOVAs.

Type-B was the most common pelvic type followed by Type-A, Type-C, and Type-D. Significant differences in the axial and coronal corridors was observed for all pelvic types at each level. Lateral mass angles increased from Types-A to C, but were smaller in Type-D.

This classification system offers a guide to surgeons navigating variable pelvic anatomy and understanding how it is associated with the differences in transosseous sacral corridors. It can assist surgeons’ preoperative planning of screw position, choice of fixation or the need for technological assistance.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 40 - 40
1 Mar 2012
Takao M Nishii T Sakai T Nakamura N Yoshikawa H Sugano N
Full Access

Introduction. Lesion location and volume are critical factors to select patients with osteonecrosis for whom resurfacing arthroplasty is appropriate. However, no reliable surgical planning system which can assess relationship between necrotic lesions and the femoral component has been established. We have developed a 3D-MRI-based planning system for resurfacing arthroplasty. The purpose of the present study was to evaluate its feasibility. Methods. The subjects included five patients with osteonecrosis of ARCO stage 3 or 4 who had undergone resurfacing THA at our institute. All patients had an MRI before surgery using 3D-SPGR sequences and fat suppression 3D-SPGR sequencea. In cases where it was difficult to distinguish bone marrow edema and reparative zone on 3D-SPGR images, fat suppression 3D-SPGR sequences were used. Simulation of resurfacing arthroplasty was performed on image analysis software where multidirectional oblique views could be reconstructed. The femoral neck axis was determined by drawing line through centers of two spheres which were fitted to the normal portion of the femoral head and the mid-portion of femoral neck. A femoral component was virtually implanted to align the femoral neck axis and match the implant center and femoral head center. Results. Planning could be performed within 10 minutes in every case. In all cases, size selection of acetabular and femoral component was within 1 size of actually implanted components. This 3D-MRI based planning system was useful to assess proportion and location of necrotic lesion in the preserved portion of femoral head in resurfacing THA. Conclusion. This preliminary study demonstrated that a 3D-MRI based planning system was useful in surgical planning of resurfacing arthroplasty for patients with osteonecrosis


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation.

Cite this article: Bone Joint J 2024;106-B(9):892–897.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 92 - 92
23 Feb 2023
Lee S Lin J Lynch J Smith P
Full Access

Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications.

The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5a) was divided to reference 3 distinct pelvic groups. A 4th group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification:

A – sSIJ is above the midpoint of L5a

B – sSIJ is between the midpoint and the lowest point of L5a

C – sSIJ is below the lowest point of L5a

D – pelves with a lumbosacral transitional vertebra

Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types.

Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively.

Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 37 - 37
1 Jun 2023
Elsheikh A Elazazy M Elkaramany M
Full Access

Introduction

Osteomyelitis is a challenge in diagnosis and treatment. 18F-FDG PET-CT provides a non-invasive tool for diagnosing and localizing osteomyelitis with a sensitivity reaching 94% and specificity reaching 100%. We aimed to assess the agreement in identifying the geographic area of infected bone and planned resection on plain X-ray versus 18F-FDG PET-CT.

Materials & Methods

Clinical photos and X-rays of ten osteomyelitis patients were shown to ten consultant surgeons; they were asked to draw the area of infection and extent of planned surgical debridement; data will be compared to 18F-FDG PET-CT results.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 532 - 540
2 May 2022
Martin H Robinson PG Maempel JF Hamilton D Gaston P Safran MR Murray IR

There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI.

Cite this article: Bone Joint J 2022;104-B(5):532–540.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 62 - 62
23 Jun 2023
Inaba Y Tezuka T Choe H Ike H
Full Access

Rotational acetabular osteotomy (RAO), one of periacetabular osteotomies, is an effective joint-preserving surgical treatment for developmental dysplasia of the hip. Since 2013, we have been using a CT-based navigation for RAO to perform safe and accurate osteotomy. CT-based navigation allows precise osteotomy during surgery but cannot track the bony fragment after osteotomy. Thus, it is an issue to achieve successful reorientation in accordance with preoperative planning. In this presentation, we introduce a new method to achieve reorientation and evaluate its accuracy.

Thirty joints in which CT-based navigated RAO was performed were included in this study. For the first 20 joints, reorientation was confirmed by tracing the lateral aspect of rotated fragment with navigation and checked if it matched with the preoperative planning. For the latter 10 joints, a new method was adopted. Four fiducial points were made on lateral side of the acetabulum in the preoperative 3-dimensional model and intraoperatively, rotation of the osteotomized bone was performed so that the 4 fiducial points match the preoperative plan.

To assess the accuracy of position of rotated fragment in each group, preoperative planning and postoperative CT were compared. A total of 24 radial reformat images of postoperative CT were obtained at a half-hour interval following the clockface system around the acetabulum. In every radial image, femoral head coverage of actual postop- and planned were measured to evaluate the accuracy of acetabular fragment repositioning.

The 4-fiducial method significantly reduced the reorientation error. Especially in the 12:00 to 1:00 position of the acetabulum, there were significantly fewer errors (p<0.01) and fewer cases with under-correction of the lateral acetabular coverage.

With the new method with 4 reference fiducials, reorientation of the acetabulum could be obtained as planned with lesser errors.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 353 - 353
1 Nov 2002
Jakob R Marti C Gautier E
Full Access

Osteotomies around the knee are still utilized a lot in Europe and in Asia while in US unicompartmental and total arthroplasty for the same indications have more and more taken over, partially due to fear of complications. We think that with careful planning and technique the indications can be maintained. Furthermore with modern methods of cartilage repair it is of utmost importance to unload overloaded compartments. Also many young patients having suffered ligamentous tears of the knee and having been reconstructed are in need of OT’s later on. Many of the poor results are due to absent or poor planning and to poor OT technique and fixation. Not every knee needs to be operated to an overcorrected position. While opening wedge OT has become trendy because of fewer neurological complications we think there are definite indications for closing wedge technique. In this lecture we would like to summarize the principles and the steps which are very personal and that are based on 20 years of practice. Indications for osteotomies around the knee. Varus Knee. Opening wedge osteotomy: Advantages: Rapid surgery, small incision, fast healing, precise correction. Indicated when:. Degree of OA moderate and angular correction of not > 8°. Useful in associated MCL Instability. Useful when open surgery on medial femoral condyle needed (Mosaicplasty). In case of associated ACL instability when tibial slope is not > 10°. Patella alta. Has a tendency to increase the tibial slope. We use tricortical grafts from the iliac crest where the base of the wedges in mm corresponds to the degrees of correction. A cervical spine AO plate with for screws is used for fixation. Creates less deformity of the proximal tibia which is an advantage for a later total knee. Increases the intraarticular pressure even when the MCL is cut or detached distally, without us knowing the effect on the degree of OA, no long term studies being known to us. Closing wedge osteotomy: Advantages: Allows higher degrees of correction. Degree of OA advanced, need for higher corrections. Useful when open surgery on lateral femoral condyle needed. In ACL instability when tibial slope must be corrected, because of need to break the medial cortical hinge a heavier implant is needed may be enforced by a sagital Ex.Fix. Patella baja. Corrections over 5 degrees need an OT of the proximal or distal fibula. We perform the resecting OT in the fibular neck, the proximal cut is incomplete removing only the anterior and lateral cortex, the distal cut is complete. This allows to shift the distal fragment proximally and in front of the proximal cortical shelf allowing nerve protection. For fixation of the tibial OT we use the 90° angled cannulated AO osteotomy plate, that is inserted over a 2,0 K wire using a specific “transporteur” in relation to the amount of correction. The OT is done using the precise AO osteotomy jig, cutting along 2,5 mm K wires inserted through the jig. The two cuts meet 5–10 mm short of the opposite cortex. The closing wedge OT creates more deformity, carries a certain risk of peroneal nerve injury and of compartment syndrome. Surgery must therefore been done very skilfully and demands expertise. All the studies about long term effect of HTO have been done one using closing wedge technique. Double Osteotomy. Indications:. For deformities of over 12° to avoid obliquity of the joint line otherwise created by tibial or femoral OT alone. When sagital deformity needs to be corrected together with frontal plane deformity, eg a flexum of 20° and a varus of 10°. Valgus knee. Closing wedge Osteotomy of the distal femur: Advantages are the potent fixation using the same plate as on the tibia leading to rapid healing. Approach is rather extensive. Indicated:. When deformity of valgus and sagital plane ( flexion contracture) need to be addressed. When valgus is marked ( in small deformities the OT can also be performed in the tibia). Opening wedge Osteotomy of the distal femur. Indicated:. When the deformity is small. When cartilage gestures need to be performed on the lateral femoral condyle. Planning of Osteotomies:. We use one leg standing films in ap, pa 45° flexion, and lateral projection, varusvalgus stress films with 15 kp (Telos) and Orthoradiogramm (hip-ankle). A potential contralateral opening on the standing film is compensated on the drawing by a push orthoradiogram which virtually brings both compartments into contact. For the varus knee the ideal crossing point of the mechanical xis sits at 30% in the lateral compartment, the centre between the tibial eminences being 0% the medial or lateral border of the tibia being 100%. This is the displacement corresponds to the classical 3° over-correction that is useful when the medial compartment is down to bone. This would be an overcorrection for the less damaged medial joint lines where however an OT may already be indicated. We therefore have prospectively studied and validated a more balanced approach. If the medial compartment in a varus knee has lost up to one third of his cartilage the axis is calculated to pass at 10% in the lateral compartment. If is down by two thirds it is meant to pass at 20% laterally. If it is totally worn it passes at 30%. The drawing for the high tibial OT on the orthoradiogram is simple:. Connect the centre of the femoral head with the point at 10, rsp. 20, rsp. 30% in the lateral compartment and prolong this new axis of the leg distally to a point lateral of the ankle joint. Now select the hinge joint for the opening or closing wedge OT 2–3 cm distal to the joint line and connect this point with the old and the new centre of the ankle. Measure the angle between the t line which corresponds to the amount of correction and the angle to open or resect. The planning for the varus OT of the distal femur in valgus deformity is somewhat more complicated but should aim at a correction which leaves a femorotibial valgus of 1–2°. Using these rules one is able to reach adequate correction


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 82 - 82
7 Aug 2023
Jones R Phillips J Panteli M
Full Access

Abstract

Introduction

Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement, Computed Tomography (CT) has become part of required pre-operative planning.

The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on planned joint arthroplasty.

Methodology

All consecutive patients undergoing an elective TJR (hip or knee arthroplasty) were retrospectively identified, over a 3-year period (December 2019 and December 2022). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 36 - 36
2 May 2024
Jones R Phillips J Panteli M
Full Access

Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures used for the management of end-stage arthritis. With the recent introduction of robotic-assisted joint replacement, Computed tomography (CT) has become part of required pre-operative planning.

The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on the planned joint arthroplasty.

All consecutive patients undergoing an elective TJA (total joint arthroplasty; hip or knee) were retrospectively identified, over a 4-year period (December 2019 and November 2023). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation.

A total of 987 patients (female: 514 patients (52.1%)) undergoing TJA were identified (THA: 444 patients (45.0%); TKA: 400 patients (40.5%); UKA: 143 patients (14.5%)). Incidental findings within imaged areas were identified in 227 patients (23.0%). Of these findings, 74 (7.5%) were significant, requiring further investigation or management, 40 (4.1%) of which represented potential malignancy and 4 (0.4%) resulting in a new cancer diagnosis. A single patient was found to have an aneurysm requiring urgent vascular intervention. Surgery was delayed for further investigation in 4 patients (0.4%). Significant findings were more frequent in THA patients (THA: 43 (9.7%) TKA/UKA: 31 (5.7%)

Within our cohort, 74 (7.5%) patients had significant incidental findings that required further investigations or management, with 4 (0.4%) having a previously undiagnosed malignancy. We strongly advocate that all robotic arthroplasty planning CTs are reviewed and reported by a specialist, to avoid missing undiagnosed malignancies and other significant diagnoses.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 86 - 86
1 Jan 2003
Kuenzler S Gross I Knappe P Pieck S Wahrburg J Kerschbaumer F
Full Access

In the framework of the modiCAS (Modular Interactive Computer Assisted Surgery) Project, which emerged from a collaboration of the University of Siegen and the University of Frankfurt in the fields of mechatronics and medicine, the development of a modular system to assist the surgeon during the whole planning and operation procedure has been started. A completely new realization of a planning system for bone surgery and alloarthroplasty is presented. Characteristics of the new system are generic interfaces for navigation, robotics and real-time data acquisition, graphic interactivity, documentation of each planning-step, a flexible wizard-guided concept and adaptable teaching modes. The system can be configured to any data source such as X-ray, CT, MRI, US with individual calibration. For planning, the data sources can be merged in any user defined way. In contrast to all existing planning systems the presented system can optionally be linked to navigation and robotic systems. The software was realized to run platform-independent on any personal computer surrounding. We used commercially available software libraries for computer graphics and graphical user interface programming. The whole system consists of several modules which are closely linked together and support all major pre- and intraoperative steps of surgery. The user interface remains the same during the planning and the intervention. Preoperative planning is carried out on a totally new planning station comprising an interactive and intuitive graphic interface, while intraoperative features include interactive matching procedures, true real-time-capability and incorporation of navigation and robotics. Initially we realized modules to support total hip allo-arthroplasty. The first application of the system is for a clinical trial on total hip alloarthroplasty. Planning is performed on the basis of radiographs and CT-datasets. Intraoperatively a navigation system and a robotic surgery system are used. Preliminary results show very precise and reproducible plannings that could be achieved in short time without special training of the clinician. Furthermore the unlimited intraoperative access to the whole planning dataset appeared to be very convenient to the surgeon because it allowed immediate response to unforeseen patient specific situations. Future adaptations of the universal planning system will be total knee alloarthroplasty, spine surgery and trauma surgery. The existing system can easily be configured to any surgical procedure because the same basic functionality is used for all applications and only special configurative datasets have to be generated for each application. The open architecture of the system enables easy integration of further input or output devices, an easy adaptation to different interventions, planning styles and operative techniques is possible


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 9 - 9
1 Jul 2022
Fleming T Torrie A Murphy T Dodds A Engelke D Curwen C Gosal H Pegrum J
Full Access

Abstract

INTRODUCTION

COVID-19 reduced availability of cross-sectional imaging, prompting the need to clinically justify pre-operative computed tomography (CT) in tibial plateau fractures (TPF). The study purpose was to establish to what extent does a CT alter the pre-operative plan in TPF compared to radiographs. There is a current paucity of evidence assessing its impact on surgical planning

METHODOLOGY

50 consecutive TPF with preoperative CT were assessed by 4 consultant surgeons. Anonymised radiographs were assessed defining the column classification, planned setup, approach, and fixation technique. At a 1-month interval, randomised matched CT scans were assessed and the same data collected. A tibial plateau disruption score (TPDS) was derived for all 4 quadrants (no injury=0,split=1,split/depression=2 and depression=3). Radiograph and CT TPDS were assessed using an unpaired T-test.