header advert
Results 181 - 200 of over 10000
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 113 - 113
23 Feb 2023
Fang Y Ackerman I Harris I Page R Cashman K Lorimer M Heath E Graves S Soh S
Full Access

While clinically important improvements in Oxford Shoulder Scores have been defined for patients with general shoulder problems or those undergoing subacromial decompression, no threshold has been reported for classifying improvement after shoulder replacement surgery. This study aimed to establish the minimal clinically important change (MCIC) for the Oxford Shoulder Score in patients undergoing primary total shoulder replacement (TSR).

Patient-reported outcomes data were sourced from the Australian Orthopaedic Association National Joint Replacement Registry Patient-Reported Outcome Measures Program. These included pre- and 6-month post-operative Oxford Shoulder Scores and a rating of patient-perceived change after surgery (5-point scale ranging from ‘much worse’ to ‘much better’). Two anchor-based methods (using patient-perceived improvement as the anchor) were used to calculate the MCIC: 1) mean change method; and 2) predictive modelling, with and without adjustment for the proportion of improved patients.

The analysis included 612 patients undergoing primary TSR who provided pre- and post-operative data (58% female; mean (SD) age 70 (8) years). Most patients (93%) reported improvement after surgery. The MCIC derived from the mean change method was 6.8 points (95%CI 4.7 to 8.9). Predictive modelling produced an MCIC estimate of 11.6 points (95%CI 8.9 to 15.6), which reduced to 8.7 points (95%CI 6.0 to 12.7) after adjustment for the proportion of improved patients.

For patient-reported outcome measures to provide valuable information that can support clinical care, we need to understand the magnitude of change that matters to patients. Using contemporary psychometric methods, this analysis has generated MCIC estimates for the Oxford Shoulder Score. These estimates can be used by clinicians and researchers to interpret important changes in pain and function after TSR from the patient's perspective. We conclude that an increase in Oxford Shoulder Scores of at least 9 points can be considered a meaningful improvement in shoulder-related pain and function after TSR.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 114 - 114
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Human error is usually evaluated using statistical descriptions during radiographic annotation. The technological advances popularized the “non-human” landmarking techniques, such as deep learning, in which the error is presented in a confidence format that is not comparable to that of the human method. The region-based landmark definition makes an arbitrary “ground truth” point impossible. The differences in patients’ anatomies, radiograph qualities, and scales make the horizontal comparison difficult. There is a demand to quantify the manual landmarking error in a probability format.

Taking the measurement of pelvic tilt (PT) as an example, this study recruited 115 sagittal pelvic radiographs for the measurement of two PTs. We proposed a method to unify the scale of images that allows horizontal comparisons of landmarks and calculated the maximum possible error using a density vector. Traditional descriptive statistics were also applied.

All measurements showed excellent reliabilities (intraclass correlation coefficients > 0.9). Eighty-four measurements (6.09%) were qualified as wrong landmarks that failed to label the correct locations. Directional bias (systematic error) was identified due to cognitive differences between observers. By removing wrong labels and rotated pelves, the analysis quantified the error density as a “good doctor” performance and found 6.77°-11.76° maximum PT disagreement with 95% data points.

The landmarks with excellent reliability still have a chance (at least 6.09% in our case) of making wrong landmark decisions. Identifying skeletal contours is at least 24.64% more accurate than estimating landmark locations. The landmark at a clear skeletal contour is more likely to generate systematic errors. Due to landmark ambiguity, a very careful surgeon measuring PT could make a maximum 11.76° random difference in 95% of cases, serving as a “good doctor benchmark” to qualify good landmarking techniques.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 33 - 33
4 Apr 2023
Pareatumbee P Yew A Koh J Zainul-Abidin S Howe T Tan M
Full Access

To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis

CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The humeral head apex (surgical entry point) was translated by 1mm in both anterior-posterior and medio-lateral directions to generate eight entry points. Total nail protrusion surface area, maximum nail protrusion distance into cortical shell and top, middle, bottom deviation between nail and intramedullary cavity centre were investigated. Statistical analysis between the apex and translated entry points was conducted using paired t-test.

A posterior-lateral translation was considered as the optimal entry point with minimum protrusion in comparison to the anterior-medial translation experiencing twice the level of protrusion. Statistically significant differences in cortical protrusion were found in anterior-medial and posterior-lateral directions producing increased and decreased level of protrusion respectively compared to the apex. The bottom anterior-posterior deviation distance appeared to be a key predictor of cortical breach with the distal nail being more susceptible. Furthermore, nails with anterior translation generated higher anterior-posterior deviation (>4mm) compared to posterior translation (<3mm).

Aside from slight posterolateral translation of the entry point from the apex, inclusion of a distal posterior-lateral bend into current straight nail design could improve nail fitting within the curved humeral bone, potentially improving distal working length within the flat and narrow medullary canal of the distal humeral shaft.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 13 - 13
23 Feb 2023
Tay M Monk A Frampton C Hooper G Young S
Full Access

Source of the study: University of Auckland, Auckland, New Zealand and University of Otago, Christchurch, New Zealand

The Oxford Knee Score (OKS) is a 12-item questionnaire used to track knee arthroplasty outcomes. Validation of such patient reported outcome measures is typically anchored to a single question based on patient ‘satisfaction’, however risk of subsequent revision surgery is also an important outcome measure. The OKS can predict subsequent revision risk within two years, however it is not known which item(s) are the strongest predictors. Our aim was to identify which questions were most relevant in the prediction of subsequent knee arthroplasty revision risk.

All primary TKAs (n=27,708) and UKAs (n=8,415) captured by the New Zealand Joint Registry between 1999 and 2019 with at least one OKS response at six months, five years or ten years post-surgery were included. Logistic regression and receiver operating characteristics (ROC) curves were used to assess prediction models at six months, five years and ten years.

Q1 ‘overall pain’ was the strongest predictor of revision within two years (TKA: 6 months, odds ratio (OR) 1.37; 5 years, OR 1.80; 10 years, OR 1.43; UKA: 6 months, OR 1.32; 5 years, OR 2.88; 10 years, OR 1.85; all p<0.05). A reduced model with just three questions (Q1, Q6 ‘limping when walking’, Q10 ‘knee giving way’) showed comparable or better diagnostic ability with the full OKS (area under the curve (AUC): TKA: 6 months, 0.77 vs. 0.76; 5 years, 0.78 vs. 0.75; 10 years, 0.76 vs. 0.73; UKA: 6 months, 0.80 vs. 0.78; 5 years: 0.81 vs. 0.77; 10 years, 0.80 vs. 0.77).

The three questions on overall knee pain, limping when walking, and knee ‘giving way’ were the strongest predictors of subsequent revision within two years. Attention to the responses for these three key questions during follow-up may allow for prompt identification of patients most at risk of revision.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 50 - 50
2 Jan 2024
Teixeira G
Full Access

Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem cell (MSC)-based therapies have become the focus of several regenerative IVD studies. Although patients in clinical trials reported less pain after cell therapy, the long-term success of cell engraftment is unclear due to the hostile IVD environment. The mechanism-of-action of MSCs is mostly dependent on the secreted soluble factors. Moreover, priming of MSC with interleukin (IL)-1β modulates the secretome content, improving its anti-inflammatory and regenerative effect on IVDD organ culture models. MSC-derived extracellular vesicles (EVs) have also been shown to modulate human IVD cells towards a healthy IVD phenotype in vitro. However, the mechanisms involved in the effect of secretome and EVs, particularly with regard to immunomodulation and matrix metabolism, are not fully understood. Our work investigates the effects of secretome and EVs secreted by IL-1β-primed MSCs to impair IVD matrix degradation and/or improve matrix formation in IVDD.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 94 - 94
2 Jan 2024
Graça A Domingues R Docheva D Gomez-Florit M Gomes M
Full Access

Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human adipose stem cells (hASCs) and different types of platelet-derived EVs, were produced. Then, the influence of the tendon-mimetic constructs and the distinct EVs populations in the hASCs tenogenic differentiation were assessed over culture time. We observed that the hASCs on the nanofibrous tendon scaffolds, show high cytoskeleton anisotropic organization that is characteristic of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted hASCs tenogenic commitment, supported by the increased gene expression of tendon-related markers (SCX and TNMD). Additionally, EVs enhanced the deposition of tendon like extracellular matrix (ECM), as evidenced by the increased gene expression of ECM-related markers such as COL1, COL3, DCN, TNC, and MMP-3, which are fundamental for ECM synthesis and degradation balance. Moreover, EVs induced lower collagen matrix contraction on hASCs, which has been related with lower myofibroblast differentiation. Overall, the results revealed that EVs are capable of modulating stem cells' behavior boosting their tenogenic commitment, through the increased expression of healthy tendon cell markers, potentiating ECM deposition and decreasing cell contractility. Therefore, platelet EVs are a promising biochemical tool, worthy to be further explored, as paracrine signaling that might potentiate tendon repair and regeneration.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 34 - 34
4 Apr 2023
Kaneko Y Minehara H Nakamura M Sekiguchi M Matsushita T Konno S
Full Access

Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model.

The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage. Iron staining was performed additionally to distinguish them from hemosiderin-phagocytosed macrophages.

In group M, HE staining revealed a hematoma-like structure, and CD68-positive cells were observed between the spacer and fibroblast layer at 1 week. The number of CD68-positive cells decreased at 2 weeks, while they were observed around the new bone at 4 and 6 weeks. In group C, fibroblast infiltration and fewer CD68-positive cells were observed in the bone defect without hematoma-like structure until 2 weeks, and no CD68-positive cells were observed at 4 and 6 weeks. Iron staining showed hemosiderin deposition in the surrounding area of the new bone in both groups at 4 and 6 weeks. The location of hemosiderin deposition was different from that of macrophage aggregation.

This study suggests that M1 macrophage aggregation is involved in the formation of induced membranes and osteogenesis and may be facilitated by the presence of spacers.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 95 - 95
2 Jan 2024
Gjerde C
Full Access

The aim of the ongoing projects was to demonstrate the efficacy of autologous bone marrow derived stem cells (MSC) combined with biomaterial to induced new bone formation in a randomized multicenter controlled clinical trial.

Patients with a need for bone reconstruction of residual edentulous ridges in both the mandible and maxilla due to bone defects with a vertical loss of alveolar bone volume and/or knife edge ridges (≤ than 4,5 mm) unable to provide adequate primary stabilization for dental implants were included in the clinical study. Autologous bone marrow MSC were expanded, loaded on BCP and used to augment the alveolar ridges. After five months bone biopsies were harvested at the implant position site and implants were installed in the regenerated bone. The implants were loaded after 8–12 weeks. Safety, efficacy, quality of life and success/survival were assessed. Five clinical centers, 4 different countries participated. Bone grafts harvested from the ramus of the mandibles were used as control in the projects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 117 - 117
23 Feb 2023
Zhou Y Shadbolt C Rele S Spelman T Dowsey M Choong P Schilling C
Full Access

Utility score is a preference-based measure of general health state – where 0 is equal to death, and 1 is equal to perfect health. To understand a patient's smallest perceptible change in utility score, the minimal clinically important difference (MCID) can be calculated. However, there are multiple methods to calculate MCID with no consensus about which method is most appropriate. The aim of this study is to calculate MCID values for the Veterans-RAND 12 (VR12) utility score using varying methods. Our hypothesis is that different methods will yield different MCID values.

A tertiary institutional registry (SMART) was used as the study cohort. Patients who underwent unilateral TKA for osteoarthritis from January 2012 to January 2020 were included. Utility score was calculated from VR12 responses using the standardised Brazier's method. Distribution and anchor methods were used for the MCID calculation. For distribution methods, 0.5 standard deviations of the baseline and change scores were used. For anchor methods, the physical and emotional anchor questions in the VR12 survey were used to benchmark utility score outcomes. Anchor methods included mean difference in change score, mean difference in 12 month score, and receiver operating characteristics (ROC) analysis with the Youden index.

Complete case analysis of 1735 out of 1809 eligible patients was performed. Significant variation in the MCID estimates for VR12 utility score were reported dependent on the calculation method used. The MCID estimate from 0.5 standard deviations of the change score was 0.083. The MCID estimate from the ROC analysis method using physical or emotional anchor question improvement was 0.115 (CI95 0.08-0.14; AUC 0.656).

Different MCID calculation methods yielded different MCID values. Our results suggest that MCID is not an umbrella concept but rather many distinct concepts. A general consensus is required to standardise how MCID is defined, calculated, and applied in clinical practice.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel.

ASCs at 2*106 cells/mL were embedded in a 3D VitroGel RGD® hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated.

Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis.

These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE.

Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 143 - 143
11 Apr 2023
Lineham B Pandit H Foster P
Full Access

Management of ankle arthritis in young patients is challenging. Although ankle arthrodesis gives consistent pain relief, it leads to loss of function and adjacent joint arthritis. Ankle joint distraction (AJD) has been shown to give good outcomes in adults with osteoarthritis or post-traumatic arthritis. The efficacy in children or young adults and those with juvenile idiopathic arthritis is less well evidenced.

Clinical notes and radiographs of all patients (n=6) managed with AJD in one tertiary referral centre were retrospectively reviewed. Radiographs were taken pre-surgery, intra-operatively, 1 month following frame removal and at the last follow up, tibiotalar joint space was assessed using ImageJ software. Measurements were taken at the medial, middle and lateral talar dome using frame components as reference. Radiographic data for patients with a good clinical outcome was compared with those who did not.

At time of surgery mean age was 16.1 years (12 – 25 years). Mean follow up was 3.4 years (1.5 – 5.9 years). Indications were juvenile idiopathic arthritis (4) post-traumatic (1) and post-infective arthritis (1). Three patients at last follow up had a good clinical outcome. Two patients required revision to arthrodesis (1.3 and 2.4 years following distraction). One patient had spontaneous fusion. One patient required oral antibiotics for pin site infection.

Inter-observer reliability was 95%. Mean joint space was 1.17mm (SD = 0.87mm) pre-operatively which increased to 6.72mm (SD = 2.23mm) at the time of distraction and 2.09mm (SD = 1.14mm) at the time of removal. At one-year follow up, mean joint space was 1.96mm (SD = 1.97mm).

Outcomes following AJD in this population are variable although significant benefits were demonstrated for 50% of the patients in this series. Radiographic joint space preoperatively did not appear to be associated with need for arthrodesis. Further research in larger groups of young patients is required.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 48 - 48
11 Apr 2023
Richter F Oesterreicher J Goeschl V Hanetseder D Hackl M Pultar M Redl H Grillari J Holnthoner W Marolt Presen D
Full Access

Recent studies suggested that both the soluble protein of the mesenchymal stromal cell (MSC) secretome, as well as the secreted extracellular vesicles (EVs) promote bone regeneration. However, there is limited knowledge of the changes in MSC secretome vesicular fraction during aging. We therefore aimed to characterize the release profiles and cargo of EVs from MSCs of different chronological ages.

Conditioned medium (CM) was collected from 13 bone marrow MSC strains (20-89 years) and from one MSC strain derived from human induced pluripotent stem cells (iPSCs). The EV-containing fraction was enriched with ultracentrifugation. The number of particles in the CM was evaluated by nanoparticle tracking analysis (NTA), and the number of EVs was evaluated by flow cytometry (FC) after staining with cell-mask-green and anti-CD81 antibody. EV cargo analysis was conducted using next-generation sequencing (NGS).

Our data confirmed the release of EVs from all MSC strains used in the study. There were no correlations between the number of particles and the number of EVs released in the CM, and between the number of EVs released and the strain age. Nevertheless, some of the lowest concentrations of EVs were found in the CM of strains over 70 years of age, which exhibited a low/absent chondrogenic and osteogenic differentiation potential. In contrast, iPSC-MSCs, which exhibited a high growth and three-lineage differentiation potential, released a similar amount of EVs as the best performing bone marrow MSC strain. NGS analysis identified several microRNAs that were significantly enriched in EVs of young MSC strains exhibiting low senescence, and those that were enriched in EVs of strains exhibiting high differentiation potentials. Gender had no influence on microRNA profiles in EVs or releasing MSCs.

Taken together, our data provides new insights into the properties of MSC vesicular secretome and its therapeutic potential during aging.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 144 - 144
11 Apr 2023
Lineham B Altaie A Harwood P McGonagle D Pandit H Jones E
Full Access

Multiple biochemical biomarkers have been previously investigated for the diagnosis, prognosis and response to treatment of articular cartilage damage, including osteoarthritis (OA). Synovial fluid (SF) biomarker measurement is a potential method to predict treatment response and effectiveness. However, the significance of different biomarkers and their correlation to clinical outcomes remains unclear. This systematic review evaluated current SF biomarkers used in investigation of cartilage degeneration or regeneration in the knee joint and correlated these biomarkers with clinical outcomes following cartilage repair or regeneration interventions.

PubMed, Institute of Science Index, Scopus, Cochrane Central Register of Controlled Trials, and Embase databases were searched. Studies evaluating SF biomarkers and clinical outcomes following cartilage repair intervention were included. Two researchers independently performed data extraction and QUADAS-2 analysis. Biomarker inclusion, change following intervention and correlation with clinical outcome was compared.

9 studies were included. Study heterogeneity precluded meta-analysis. There was significant variation in sampling and analysis. 33 biomarkers were evaluated in addition to microRNA and catabolic/anabolic ratios. Five studies reported on correlation of biomarkers with six biomarkers significantly correlated with clinical outcomes following intervention. However, correlation was only demonstrated in isolated studies.

This review demonstrates significant difficulties in drawing conclusions regarding the importance of SF biomarkers based on the available literature. Improved standardisation for collection and analysis of SF samples is required. Future publications should also focus on clinical outcome scores and seek to correlate biomarkers with progression to further understand the significance of identified markers in a clinical context.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 100 - 100
2 Jan 2024
Jahr H
Full Access

Degeneration of the intervertebral disc (IVD), and subsequent low back pain, is an almost inevitable cause of disability. The underlying mechanisms are complex and current therapeutic strategies mainly focus on symptomatic relief rather than on the intrinsic regeneration of the IVD. This talk will provide an overview of special anatomical features and the composition of the IVD as well as its cellular microenvironment. Selected promising conceptional regenerative approaches will be discussed.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 50 - 50
11 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries.

Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior (AP), axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking.

In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). AP and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were identified/detected between the groups (p ≥ 0.113).

Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 58 - 58
2 Jan 2024
Camarero-Espinosa S
Full Access

The anterior cruciate ligament (ACL) is the connective tissue located at the end of long bones providing stability to the knee joint. After tear or rupture clinical reconstruction of the tissue remains a challenge due to the particular mechanical properties required for proper functioning of the tissue. The outstanding mechanical properties of the ACL are characterized by a viscoelastic behavior responsible of the dissipation of the loads that are transmitted to the bone. These mechanical properties are the result of a very specialized graded extracellular matrix that transitions smoothly between the heterotypic cells, stiffness and composition of the ACL and the adjacent bone. Thus, mimicking the zonal biochemical composition, cellular phenotype and organization are key to reset the proper functioning of the ACL.

We have previously shown how the biochemical composition presented to cells in electrospun scaffolds results in haptokinesis, reverting contact-guidance effects.[1] Here, we demonstrate that contact guidance can also be disrupted by structural parameters in aligned wavy scaffolds. The presentation of a wavy fiber arrangement affected the cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grew in aggregates, deposited an abundant ECM rich in fibronectin and collagen II, and expressed higher amounts of collagen II, X and tenomodulin as compared to aligned scaffolds. In-vivo implantation in rabbits of triphasic scaffolds accounting for aligned-wavy-aligned zones showed a high cellular infiltration and the formation of an oriented ECM, as compared to traditional aligned scaffolds.[2]


The bone-patellar tendon-bone (BTB) autograft is associated with difficulty kneeling following anterior cruciate ligament (ACL) reconstruction, however it is unclear whether it results in a more painful or symptomatic knee when compared to the hamstring tendon autograft. This study aimed to identify the rate of significant knee pain and difficulty kneeling following primary ACL reconstruction and clarify whether graft type influences the risk of these complications.

Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and November 2019 were analyzed. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was analyzed to identify patients who reported significant knee pain, defined as a KOOS Pain subscale score of ≤72 points, and kneeling difficulty, defined as a patient who reported “severe” or “extreme” difficulty when they kneel. The rate of knee pain and kneeling difficulty was compared between graft types via univariate Chi-square test and multivariate binary logistic regression with adjustment for patient demographics.

4492 primary ACL reconstructions were analyzed. At 2-year follow-up, 9.3% of patients reported significant knee pain (420/4492) and 12.0% reported difficulty with kneeling (537/4492). Patients with a BTB autograft reported a higher rate of kneeling difficulty compared to patients with a hamstring tendon autograft (21.3% versus 9.4%, adjusted odds ratio = 3.12, p<0.001). There was no difference between graft types in the rate of significant knee pain (9.9% versus 9.2%, p = 0.49) or when comparing absolute values of the KOOS Pain (mean score for BTB = 88.7 versus 89.0, p = 0.37) and KOOS Symptoms subscales (mean score for BTB = 82.5 versus 82.1, p = 0.49).

The BTB autograft is a risk factor for post-operative kneeling difficulty, but it does not result in a more painful or symptomatic knee when compared to the hamstring tendon autograft.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 67 - 67
23 Jun 2023
Yamamoto T Fujita J
Full Access

Injury of the lateral femoral cutaneous nerve (LFCN) is one of the known complications after periacetabular osteotomy (PAO) using anterior approach. We previously reported that the incidence of LFCN injury was 48% at 1 year after PAO. However, there was no study examining the sequential changes of LFCN injury status. In this study, we performed a prospective over 3-year follow-up study as to the incidence of LFCN injury as well as its clinical outcomes.

This study included 40 consecutive hips in 40 patients (3 males and 37 females) who underwent PAO from May 2016 to July 2018. The mean age at surgery was 36.7 years (17 to 60). The mean observation period was 47.3 months (36 to 69). The incidence and severity of LFCN injury was evaluated, while clinical scores, including the Harris Hip Score (HHS), Short-Form 36 Health Survey (SF-36), and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ), were also investigated.

At 3 years after PAO, LFCN injury was observed in 13 of 40 (33%) patients, in which 7 patients who had a symptom at 1 year have completely recovered. There was no significant difference in the HHS and SF-36 between patients with and without LFCN injury at 3 years. Regarding the JHEQ, a significant difference was recognized in the patient satisfaction and mental score between patients with and without LFCN injury, but there were no significant differences in the other clinical scores.

The incidence of LFCN injury gradually decreased to 33% at 3 years after CPO. LFCN injury did not influence the clinician-reported outcome, while it had a negative impact on patient satisfaction and mental score based on the patient-reported outcome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 79 - 79
7 Aug 2023
Houston J Everett S Choudhary A Middleton S Mandalia V
Full Access

Abstract

Introduction

Symptomatic osteochondritis dissecans (OCD) and traumatic osteochondral fractures (OCF) are treated with fixation with either metal or bioabsorbable device. We performed a comparative review of patients with OCD and traumatic OCF stabilised with Bio-Compression screws which are headless absorbable compression screws. Our aim was to determine whether there was a difference in outcomes between presentations.

Methods

Retrospective single-centre cohort study of all patients with OCD and OCF treated with Bio-Compression screw between July 2017 and September 2022. All patients followed up until discharge with satisfactory clinical outcome. Primary outcome was return to theatre for ongoing pain or mechanical symptoms. Secondary outcome was evidence of fixation failure on follow-up MRI scan.