Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.Aims
Methods
Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.Aims
Methods
Aims. Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. Methods. An
Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?. We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an
It is unclear why ACL rupture increases osteoarthritis risk, regardless of ACL reconstruction. Our aims were: 1) to establish the reliability and accuracy of a direct method of determining tibiofemoral contact in vivo with UO-MRI, 2) to assess differences in knees with ACL rupture treated nonoperatively versus operatively, and 3) to assess differences in knees with ACL rupture versus healthy knees. We recruited a convenience sample of patients with prior ACL rupture. Inclusion criteria were: 1) adult participants between 18–50 years old; 2) unilateral, isolated ACL rupture within the last five years; 3) if reconstructed, done within one year from injury; 4) intact cartilage; and 5) completed a graduated rehabilitation program culminating in return to sport or recreational activities. Participants were excluded if they had other ligament ruptures, osteoarthritis, an incompletely rehabilitated injury, were prohibited from undergoing MRI, or had a history of ACL re-rupture. Using the UO-MRI, we investigated tibiofemoral contact area, centroid location, and six degrees of freedom alignment under standing, weightbearing conditions with knees extended. We compared patients with ACL rupture treated nonoperatively versus operatively, and ACL ruptured knees versus healthy control knees. We assessed reliability using the intra-class correlation coefficient, and accuracy by comparing UO-MRI contact area with a 7Tesla MRI reference standard. We used linear mixed-effects models to test the effects of ACL rupture and ACL reconstruction on contact area. We used a paired t test for centroid location and alignment differences in ACL ruptured knees versus control knees, and the independent t test for differences between ACL reconstruction and no reconstruction. Analyses were performed using R version 3.5.1. We calculated sample size based on a previous study that showed a contact area standard deviation of 13.6mm2, therefore we needed eight or more knees per group to detect a minimum contact area change of 20mm2with 80% power and an α of 0.05. We recruited 18 participants with ACL rupture: eight treated conservatively and 10 treated with ACL reconstruction. There were no significant differences between the operative and nonoperative ACL groups in terms of age, gender, BMI, time since injury, or functional knee scores (IKDC and KOOS). The UO-MRI demonstrated excellent inter-rater, test-retest, and intra-rater reliability with ICCs for contact area and centroid location ranging from 0.83–1.00. Contact area measurement was accurate to within 5% measurement error. At a mean 2.7 years after injury, we found that ACL rupture was associated with a 10.4% larger medial and lateral compartment contact areas (P=0.001), with the medial centroid located 5.2% more posterior (P=0.001). The tibiae of ACL ruptured knees were 2.3mm more anterior (P=0.003), and 2.6° less externally rotated (P=0.010) relative to the femur, than contralateral control knees. We found no differences between ACL reconstructed and nonreconstructed knees. ACL rupture was associated with significant mechanical changes 2.7 years out from injury, which ACL reconstruction did not restore. These findings may partially explain the equivalent risk of post-traumatic osteoarthritis in patients treated operatively and nonoperatively after ACL rupture.
Aims. Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel
Cam-type femoroacetabular impingement (cam-FAI) can be treated with femoral neck osteochondroplasty to increase the clearance between the femoral head/neck and the acetabular rim. Because femur-acetabulum contact is very difficult to assess directly in patients, it is not clear if this surgery achieves its objective of reducing femur-acetabulum contact, and it is not clear how much of the femoral head/neck region should be resected to allow clearance in all activities. Our research question was: “Does femoral neck osteochondroplasty increase femur-acetabulum clearance in an extreme hip posture in patients with cam FAI?”. We recruited 8 consecutive patients scheduled to undergo arthroscopic femoral neck osteochondroplasty to treat cam-type FAI. We assessed clearance between the acetabulum and the femoral neck before surgery and at 6 months post-op using an
This pilot study aims to investigate the utility and feasibility of a unique upright MR scan for imaging hips affected by Legg-Calve-Perthes Disease (LCPD) with patient standing up, in comparison to the standard supine scans. Protocol development using this unique
Purpose and Background:. The spread of upright MRi scanning is a relatively new development in the UK. However, there is a lack of information about whether weight bearing scans confer any additional useful information for low back conditions. Methods and Results:. Forty-five patient referrals to the
Purpose. to evaluate the kinematics of a knee with a polyurethane meniscal scaffold for partial meniscus defect substitution during flexion under weightbearing conditions in an
Abnormal knee kinematics following reconstruction
of the anterior cruciate ligament may exist despite an apparent resolution
of tibial laxity and functional benefit. We performed upright, weight-bearing
MR scans of both knees in the sagittal plane at different angles
of flexion to determine the kinematics of the knee following unilateral reconstruction
(n = 12). The uninjured knee acted as a control. Scans were performed
pre-operatively and at three and six months post-operatively. Anteroposterior
tibial laxity was determined using an arthrometer and patient function
by validated questionnaires before and after reconstruction. In
all the knees with deficient anterior cruciate ligaments, the tibial
plateau was displaced anteriorly and internally rotated relative
to the femur when compared with the control contralateral knee,
particularly in extension and early flexion (mean lateral compartment displacement:
extension 7.9 mm ( Our results show that despite improvement in laxity and functional
benefit, abnormal knee kinematics remain at six months and actually
deteriorate from three to six months following reconstruction of
the anterior cruciate ligament.
Background and purpose of study: Intervertebral disc height loss is associated with decreased spinal stability and increased loading on spinal structures, which may be a source of back pain. In the past, total stature change, measured using stadiometry, has often been used as an indication of disc height loss and as an index of the load on the spine. The aim of this study was to use an
Purpose: To evaluate the changes in lumbar spine kinematics and clinical outcomes of patients with spinal stenosis 2 years after implantation of the X Stop interspinous decompression device. Methods: 10 patients (6 males; 4 females) underwent X Stop procedure. Age ranged from 57 years to 71 years. 15 levels were operated (5 single levels: L. 2-3. - 1, L. 4-5. - 4; 5 double levels: L. 3-4. +L. 4-5. – 4; L. 4-5. +L. 5. S. 1. – 1). A 0.6 Tesla
Purpose: To measure the effect of the X-Stop interspinous distraction device on spinal canal, exit foramina, and disc height dimensions at the operated level; and adjacent segment endplate angle, and lumbar spine movement in patients with symptomatic lumbar spinal stenosis using