The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair. We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders.Aims
Methods
Vascular compromise due to arterial injury is a rare but serious complication of a proximal humeral fracture. The aims of this study were to report its incidence in a large urban population, and to identify clinical and radiological factors which are associated with this complication. We also evaluated the results of the use of our protocol for the management of these injuries. A total of 3,497 adult patients with a proximal humeral fracture were managed between January 2015 and December 2022 in a single tertiary trauma centre. Their mean age was 66.7 years (18 to 103) and 2,510 (72%) were female. We compared the demographic data, clinical features, and configuration of those whose fracture was complicated by vascular compromise with those of the remaining patients. The incidence of vascular compromise was calculated from national population data, and predictive factors for its occurrence were investigated using univariate analysis.Aims
Methods
There is little information in the literature about the use of dual-mobility (DM) bearings in preventing re-dislocation in revision total hip arthroplasty (THA). The aim of this study was to compare the use of DM bearings, standard bearings, and constrained liners in revision THA for recurrent dislocation, and to identify risk factors for re-dislocation. We reviewed 86 consecutive revision THAs performed for dislocation between August 2012 and July 2019. A total of 38 revisions (44.2%) involved a DM bearing, while 39 (45.3%) and nine (10.5%) involved a standard bearing and a constrained liner, respectively. Rates of re-dislocation, re-revision for dislocation, and overall re-revision were compared. Radiographs were assessed for the positioning of the acetabular component, the restoration of the centre of rotation, leg length, and offset. Risk factors for re-dislocation were determined by Cox regression analysis. The modified Harris Hip Scores (mHHSs) were recorded. The mean age of the patients at the time of revision was 70 years (43 to 88); 54 were female (62.8%). The mean follow-up was 5.0 years (2.0 to 8.75).Aims
Methods
The April 2024 Shoulder & Elbow Roundup360 looks at: Acute rehabilitation following traumatic anterior shoulder dislocation (ARTISAN): pragmatic, multicentre, randomized controlled trial; Prevalence and predisposing factors of neuropathic pain in patients with rotator cuff tears; Are two plates better than one? The clavicle fracture reimagined; A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution; Complication rates and deprivation go hand in hand with total shoulder arthroplasty; Longitudinal instability injuries of the forearm; A better than “best-fit circle” method for glenoid bone loss assessment; 3D supraspinatus muscle volume and intramuscular fatty infiltration after arthroscopic rotator cuff repair.
Aims. Acute and chronic injuries of the interosseus membrane can result in longitudinal instability of the forearm. Reconstruction of the central band of the interosseus membrane can help to restore biomechanical stability. Different methods have been used to reconstruct the central band, including tendon grafts, bone-ligament-bone
Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for
Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability. Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure. Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future
Abstract. Introduction. Traumatic knee dislocations are devastating injuries and there is no single best accepted treatment. This study looked at functional outcome of a single surgeon case series of patients who underwent surgical management of their knee dislocation. Methods. Eighty-seven patients with knee dislocation were treated at a major trauma centre. Acute surgical repair and reconstruction with fracture fixation within 4 weeks was preferred unless the patient was too unstable (Injury severity score>16). The collaterals were repaired and augmented using a variety of autografts, allografts or
Aims. Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. Methods. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout. Results. Six studies involving 353 fractures were identified from 3,078 records. Following ROB2 assessment, five studies (representing 338 fractures) were appropriate for meta-analysis. Primary outcomes showed non-significant reductions in articular depression at immediate postoperative (mean difference -0.45 mm, p = 0.25, 95%confidence interval (CI) -1.21 to 0.31, I. 2. = 0%) and long-term (> six months, standard mean difference -0.56, p = 0.09, 95% CI -1.20 to 0.08, I. 2. = 73%) follow-up in synthetic bone grafts. Secondary outcomes included mechanical alignment, limb functionality, and defect site pain at long-term follow-up, perioperative blood loss, duration of surgery, occurrence of surgical site infections, and secondary surgery. Mean blood loss was lower (90.08 ml, p < 0.001, 95% CI 41.49 to 138.67) and surgery was shorter (16.17 minutes, p = 0.04, 95% CI 0.39 to 31.94) in synthetic treatment groups. All other secondary measures were statistically comparable. Conclusion. All studies reported similar methodologies and patient populations; however, imprecision may have arisen through performance variation. These findings supersede previous literature and indicate that, despite perceived biological advantages, autologous bone grafting does not demonstrate superiority to
Long-term outcomes following the use of human dermal allografts in the treatment of symptomatic irreparable rotator cuff tears are not known. The aim of this study was to evaluate these outcomes, and to investigate whether this would be a good form of treatment in young patients in whom a reverse shoulder arthroplasty should ideally be avoided. This prospective study included 47 shoulders in 45 patients who underwent an open reconstruction of the rotator cuff using an interposition GraftJacket allograft to bridge irreparable cuff tears, between January 2007 and November 2011. The Oxford Shoulder Score (OSS), pain score, and range of motion (ROM) were recorded preoperatively and at one year and a mean of 9.1 years (7.0 to 12.5) postoperatively.Aims
Methods
The aim of this study is to provide a detailed description of cases combining bridging patch repair with artificial ligament “internal brace” reinforcement to treat irreparable massive rotator cuff tears, and report the preliminary results. This is a retrospective review of patients with irreparable massive rotator cuff tears undergoing fascia lata autograft bridging repair with artificial ligament “internal brace” reinforcement technique between January 2017 and May 2018. Inclusion criteria were: patients treated arthroscopically for an incompletely reparable massive rotator cuff tear (dimension > 5 cm or two tendons fully torn), stage 0 to 4 supraspinatus fatty degeneration on MRI according to the Goutallier grading system, and an intact or reparable infraspinatus and/or subscapularis tendon of radiological classification Hamada 0 to 4. The surgical technique comprised two components: first, superior capsular reconstruction using an artificial ligament as an “internal brace” protective device for a fascia lata patch. The second was fascia lata autograft bridging repair for the torn supraspinatus. In all, 26 patients with a mean age 63.4 years (SD 6.2) were included.Aims
Methods
The rate of fracture and subsequent nonunion after radiation therapy for soft-tissue sarcomas and bone tumors has been demonstrated to quite high. There is a paucity of data describing the optimal treatment for these nonunions. Free vascularized fibular grafts (FVFG) have been used successfully in the treatment of large segmental bone defects in the axial and appendicular skeleton, however, their efficacy with respect to treatment of radiated nonunions remains unclear. The purpose of the study was to assess the 1) union rate, 2) clinical outcomes, and 3) complications following FVFG for radiation-induced femoral fracture nonunions. We identified 24 patients who underwent FVFG for the treatment of radiation-induced femoral fracture nonunion between 1991 and 2015. Medical records were reviewed in order to determine oncologic diagnosis, total preoperative radiation dose, type of surgical treatment for the nonunion, clinical outcomes, and postoperative complications. There were 11 males and 13 females, with a mean age of 59 years (range, 29 – 78) and a mean follow-up duration of 61 months (range, 10 – 183 months). Three patients had a history of diabetes mellitus and three were current tobacco users at the time of FVFG. No patient was receiving chemotherapy during recovery from FVFG. Oncologic diagnoses included unspecified soft tissue sarcomas (n = 5), undifferentiated pleomorphic sarcoma (UPS) (n = 3), myxofibrosarcoma (n = 3), liposarcoma (n = 2), Ewing's sarcoma (n = 2), lymphoma (n = 2), hemangiopericytoma, leiomyosarcoma, multiple myeloma, myxoid chondrosarcoma, myxoid liposarcoma, neurofibrosarcoma, and renal cell carcinoma. Mean total radiation dose was 56.3 Gy (range, 39 – 72.5), given at a mean of 10.2 years prior to FVFG. The average FVFG length was 16.4 cm. In addition to FVFG, 13 patients underwent simultaneous autogenous iliac crest bone grafting, nine had other cancellous autografting, one received cancellous allograft, and three were treated with
To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization).Aims
Methods
This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient. Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.Objectives
Methods
Knee dislocations are a rare but serious cause of trauma. The aim of this study was to establish current demographics and injury patterns/associations in multi-ligament (MLI) knee injuries in the United Kingdom. A National survey was sent out to trauma & orthopaedic trainees using the British Orthopaedic Trainees Association sources in 2018. Contributors were asked to retrospectively collect a data for a minimum of 5 cases of knee dislocation, or multi-ligament knee injury, between January 2014 and December 2016. Data was collected regarding injury patterns and surgical reconstructions. 73 cases were available for analysis across 11 acute care NHS Trusts. 77% were male. Mean age was 31.9 (SD 12.4; range 16–69). Mean Body Mass Index (BMI) was 28.3 (SD 7.0; range 19–52). Early (<3 weeks) reconstruction was performed in 53% with 9 (23%) patients under-going procedures for arthrofibrosis. Late (>12 weeks) reconstruction took place in 37% with one (3.7%) patient under-going arthroscopic arthrolysis. 4% had delayed surgery (3–12 weeks) and 5% had early intervention with delayed ACL reconstruction. For injuries involving 3 or more ligament injuries graft choices were ipsilateral hamstring (38%), bone-patella tendon-bone (20%), allograft (20%), contralateral hamstring (17%) and
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
Current strategies for bone repair have accepted limitations and the search for