Advertisement for orthosearch.org.uk
Results 1 - 20 of 312
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 16 - 16
12 Dec 2024
Shah D Shah A
Full Access

Introduction & Aim. During TKR it is mandatory to achieve perfect soft tissue balance and component alignment. It is necessary to access all tight structures for proper releases. We aim to analyze the results of Trivector arthrotomy approach for TKRs. Methods. It is a retrospective study of 1050 cases between 2010-2020. All cases were performed by a single surgeon. Approach includes dividing distal 30% of vastus medialis along with medial retinaculum - 1cm medial to patella and patellar tendon distally up to Tibial tuberosity and raised as a single flap. Results. 656 cases Varus + FFD, 305 Varus, 60 Valgus, 24 hyperextension deformity & 5 neutral alignment cases were included. Results showed 87% patients at postop day-1 and 96% by day-4 regained ability to perform unassisted SLR. 4% had 5-to-10-degree quadriceps lag at discharge & recovered to neutral by 4 weeks. The surgical field was adequate in all cases. KSS score improved from Pre op of 56 (38-71) to a post op of 89 (84-95). All patients by day 10 were walking unaided or with a single cane in case of Bilateral TKRs. Medial parapatellar arthrotomy divides the quadriceps tendon. The alteration in various vectors of Quadriceps can change the balance and laterally mal-track the patella. Incidence of Lateral release is higher with this. Mid and subvastus approaches are non-extensile and have poor visibility during surgery increasing risk of malalignment. Trivector arthrotomy is extensile and retains 70% strength of vastus medialis. At closure, the quads mechanism is perfectly aligned, reducing the incidence of lateral mal-tracking and lateral release. Conclusion. The extensile nature of the approach and minimal disruption of the quadriceps mechanism encourages us to use this approach for all cases. It is a true “Gateway.”


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 5 - 5
12 Dec 2024
Shah D Shah A
Full Access

Introduction & Aim. The use of All-Poly Tibia has been in practice since the early 1970's. Recently due to the reports on wear and osteolysis in other articulations, this component has generated significant interest. In the current study we aim to report early medium-term results of All-poly Tibial components in elderly (>70 years) patients. Method. Study of 455 cases done between 2005-2020. All the cases were performed by a single surgeon. All-Poly Tibial component implantations were performed using Standard mechanical jigs and the same posterior-stabilized implant was used for all cases. Results. 20 cases were lost to follow-up. 25 patients died due to natural causes. Mean age at index surgery was 74 years (70 - 91 years). Preop KSS average was 47 (31- 62). Post operative at the last follow up was 87 (71- 93). Of the 410 cases there were 8 revisions, 6 for deep sepsis and 2 for periprosthetic fractures. There were no revisions for aseptic loosening or osteolysis. All cases are performing well functionally and clinically. 18 cases had a non-progressive radiolucent line beneath the Tibial component. The combination of perfect alignment and soft tissue balance creates an environment for a successful TKR. The choice of the All-Poly Tibial component for functionally low demand age group patients reduces the chances of premature wear and osteolysis. In elderly patients the implant should outlive the patient. Here it is observed that at 5-7 years aseptic loosening and subsequent revision chances are low. The all-poly Tibial component is significantly cheaper as compared to its metal back counterpart. Conclusion. An excellent clinical result in our hands for this group of patients supports the continued use of this implant strongly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 10 - 10
17 Jun 2024
Malhotra K Patel S Cullen N Welck M
Full Access

Background. The cavovarus foot is a complex 3-dimensional deformity. Although a multitude of techniques are described for its surgical management, few of these are evidence based or guided by classification systems. Surgical management involves realignment of the hindfoot and soft tissue balancing, followed by forefoot balancing. Our aim was to classify the pattern of residual forefoot deformities once the hindfoot is corrected, to guide forefoot correction. Methods. We included 20 cavovarus feet from adult patients with Charcot-Marie-Tooth who underwent weightbearing CT (mean age 43.4 years, 14 males). Patients included had flexible deformities, with no previous surgery. Previous work established majority of rotational deformity in cavovarus feet occurs at the talonavicular joint, which is often reduced during surgery. Using specialised software (Bonelogic 2.1, Disior) a 3-dimensional, virtual model was created. Using data from normal feet as a guide, the talonavicular joint of the cavovarus feet was digitally reduced to a ‘normal’ position. Models of the corrected position were exported and geometrically analysed using Blender 3.6 to identify anatomical trends. Results. We identified 3 types of cavovarus forefoot morphotypes. Type 1 was seen in 13 cases (65%) and was defined as a foot where only the first metatarsal was relatively plantarflexed to the rest of the foot, with no significant residual adduction after talonavicular correction. Type 2 was seen in 4 cases (20%) and was defined as a foot where the second and first metatarsals were progressively plantarflexed, with no significant adduction. Type 3 was seen in 3 cases (15%) and was defined as a foot where the metatarsals were still adducted after talonavicular de-rotation. Conclusion. We classify 3 forefoot morphotypes in cavovarus feet. It is important to recognise and anticipate the residual forefoot deformities after hindfoot correction as different treatment strategies may be required for different morphotypes to achieve balanced correction


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims

Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs.

Methods

The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims

Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment.

Methods

A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims

Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique.

Methods

Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 4 - 4
1 Mar 2021
Bragonzoni L Cardinale U Bontempi M Di Paolo S Zinno R Alesi D Muccioli G Pizza N Di Sarsina T Agostinone P Zaffagnini S
Full Access

Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee in vivo kinematics after the implantation of a MS prosthesis during sit to stand and lunge movements. To describe the in vivo kinematics of the knee after MS Fixed Bearing TKA (GMK Sphere (TM) Medacta International AG, Castel San Pietro, Switzerland) using Model Based dynamic RSA. A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features


Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims

The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA).

Methods

Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 19 - 19
1 Feb 2021
Wakelin E Plaskos C Shalhoub S Keggi J DeClaire J Lawrence J Koenig J Randall A Ponder C
Full Access

Introduction. Achieving a balanced joint with neutral alignment is not always possible in total knee arthroplasty (TKA). Intra-operative compromises such as accepting some joint imbalance, non-neutral alignment or soft-tissue release may result in worse patient outcomes, however, it is unclear which compromise will most impact outcome. In this study we investigate the impact of post-operative soft tissue balance and component alignment on postoperative pain. Methods. 135 patients were prospectively enrolled in robot assisted TKA with a digital joint tensioning tool (OMNIBotics with BalanceBot, Corin USA) (57% female; 67.0 ± 8.1 y/o; BMI: 31.9 ± 4.8 kg/m. 2. ). All surgeries were performed with a PCL sacrificing tibia or femur first techniques technique, using CR femoral components and a deep dish tibial insert (APEX, Corin USA). Gap measurements were acquired under load (average 80 N) throughout the range of motion during trialing with the tensioning tool inserted in place of the tibial trial. Component alignment parameters and post-operative joint gaps throughout flexion were recorded. Patients completed 1-year KOOS pain questionnaires. Spearman correlations and Mann-Whitney-U tests were used to investigate continuous and categorical data respectively. All analysis performed in R 3.5.3. Results. Significant correlations were found between KOOS Pain and joint balance (p < 0.05). Joint gap thresholds of an equally balanced or tighter medial compartment in extension, ±1 mm medial laxity compared to the final insert thickness in midflexion, and medio-lateral imbalance < 1.5 mm in flexion generated subgroups with significantly improved pain outcomes (median Δ = 8.3, 5.6 and 2.8 points, respectively). When all joint balance thresholds were satisfied, further improved outcomes resulted (median Δ = 11.2, p = 0.0018) (Figure 1 Left). No significant correlations were identified between femoral coronal (0.8 ± 2.1° valgus) and axial (2.1 ± 2.7° external) or tibiofemoral extension (1.1 ± 2.4° varus) and flexion (2.4 ± 2.8° varus) coronal alignments and KOOS Pain. Neutral and non-neutral femoral (±3° coronal and 0° – 5° external) and tibiofemoral (±3° coronal and −2° − 5° external) subgroups also reported no difference in KOOS pain outcome (Figure 1 Right). Discussion and Conclusion. The gap profiles identified here help build the understanding of joint balance and its relationship with outcome when using a PCL sacrificing deep dish tibial insert. Using a digitally-controlled distraction device, joint gap windows of clinical relevance were identified with statistically improved patient outcomes. By combining joint gap targets, subpopulations were identified with clinically significant improved pain outcomes. Furthermore, small changes in component alignment did not impact 1 yr pain outcomes, indicating soft tissue balance has a greater impact on outcome that alignment in the enrolled population. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 33 - 33
1 Feb 2021
Smith B
Full Access

Background. Conventional instrumented total knee arthroplasty uses fixed angles for bony cuts followed by soft tissue releases to achieve balance. Robotic-assisted surgery allows for soft tissue balancing first then bony resection. The changes to the implant position from conventional instrumented surgery were measured and recorded. Methods. A single center, retrospective study reviewed consecutive total knee replacement surgeries over a 12 month period utilizing robotic pre-planning and balancing techniques. Changes to femoral and tibial varus/valgus and femoral rotation from traditional instrumented surgery positions were analyzed. Results. There were 145 knees which were grouped by preoperative deformity and the changes were frequent (94%), variable for any given deformity, and often unpredictable. Staged bilateral total knee arthroplasty patients also showed variability between knees. Conclusion. Robotic-assisted knee replacement technology not only has the advantage of navigation with regard to accurate implant positioning but also provides real-time, actionable data to better position the implant prior to bone resection and minimize soft tissue damage


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 68 - 68
1 Dec 2020
Taylan O Slane J Ghijselings I Delport HP Scheys L
Full Access

Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure. 1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome. 2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments. 3. . Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated. 4. and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05). Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01). Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes. In conclusion, to further prove the success of PIPB, further biomechanical studies are required to evaluate the success rate of PIPB technique in different implant designs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 14 - 14
1 Dec 2020
Haider Z Iranpour F Subramanian P
Full Access

The number of total knee arthroplasties continues to increase annually with over 90,000 total knee replacements performed in the United Kingdom in 2018. Multiple national bodies including the British Association for Surgery of the Knee (BASK) and the British Orthopaedic Association collaborated in July 2019 to produce best practice guidance for knee arthroplasty surgery. This study aims to review practice in a regional healthcare trust against these guidelines. Fifty total knee replacement operation notes were reviewed between January and February 2020 from 11 different consultant orthopaedic surgeons. Documents were assessed against 17 criteria recommended by the BASK guidance. Personnel names and grades were generally well documented. Tourniquet time and pressure were documented in over 98% of operation notes however, protection from spirit burns was not documented at all. Trialling and soft tissue balancing was well recorded in 100% and 96% of operation notes respectively. Areas lacking in documentation included methods utilised to optimise cementation technique and removal of cement debris. Protection of key knee structures was documented in only 56% of operation notes clearly. Prior to closure, final assessment of mechanism integrity, collateral ligament was not documented at all and final ROM after implantation of components was recorded 34% of the time. Subsequently authors have created a universal operation note template, uploaded onto the patient electronic notes, which prompts surgeons to complete documentation of the relevant criteria advocated by BASK. In conclusion, detailed and systematic documentation is vital to prevent adverse events and reduce the risk of litigation. By producing detailed operative templates this risk can be mitigated


Bone & Joint 360
Vol. 9, Issue 6 | Pages 18 - 21
1 Dec 2020


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims

Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation.

Methods

Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims

A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation.

Methods

This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded.