Rates of prosthetic joint infection in megaprostheses are high. The application of
Complex acetabular reconstruction for oncology and bone loss are challenging for surgeons due to their often hostile biological and mechanical environments. Titrating concentrations of
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.Aims
Methods
Musculoskeletal disorders is one of most important health problems human population is facing includes. Approximately 310 thousand of hip protheses have been used in 45 years and older patients in total according to the recent studies have been done. [1, 2]. Many factors, including poor osseointegration or relaxation of the implant due to stress, limit the life of the load-bearing implants [3]. To overcome these difficulties and to protect metal implants inside the body, the surfaces of the implants were coated with
Orthopaedic and trauma implant related infection remains one of the major complications that negatively impact clinical outcome and significantly increase healthcare expenditure. Hydroxyapatite has been used for many years to increase implant osseointegration. Silver has been introduced into hydroxyapatite as an antimicrobial coating for orthopedic implants. This surface coatings can both increase tissue compatibility and prevent implant-related infections. We examined infection markers and blood silver values, liver and kidney function tests of 30 patients with of three groups of orthopedic implants, external fixators, intramedullary nails and hip replacements, coated with Ag + ion doped CaP based ceramic powder to determine safety and effectiveness of this dual-function coating. During 1 year follow-up, the pin sites were observed at the external fixator group, and wound areas for the proximal femoral nail and hip arthroplasty group at regular intervals. In addition, liver and kidney function tests, infection markers and blood silver values were checked in patients. In the external fixator group, only 4 out of 91 pin sites (%4.39) were infected. The wound areas healed without any problem in patients with proximal femoral nails and hip arthroplasty. There was no side effect suggesting silver toxicity such as systemic toxic side effect or argyria in any patient and blood silver level did not increase. Compared to similar patient groups in the literature, much lower infection rates were obtained (p = 0.001), and implant osseointegration was good. In patients with chronic infection, the implants were applied acutely after removing the primary implant and with simple debridement. Unlike other silver coating methods, silver was trapped in hydroxyapatite crystals in the ionic form, which is released from the coating during the process of osseointegration, thus, the silver was released into the systemic circulation gradually that showed antibacterial activity locally. We conclude that the use of orthopedic implants with a
Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.
Long-term survival and favourable outcome of implant use are determined by bone-implant osseointegration and absence of infection near the implants. As with most diseases, prevention is the preferred approach.
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. Cite this article:
Introduction. Titanium (Ti) alloys are used as porous bone ingrowth materials on non-cemented knee arthroplasty tibial tray implants. Nano-surface mechanism that increase the osseointegration rate between Ti alloys, and surrounding tissue has been recognized to improve the interface to ultimately allow patients to weight bear on non-cemented arthroplasty implants sooner. Bioactive TiO. 2. nanotube arrays has been shown to accelerate osseointegration. Ideally, these surfaces would both increase the adhesion of bone to the implant and help to reduction of infection to substitute for antibiotic bone cement. This study examines a combination treatment of both TiO. 2. nanotubes combined with silver nano-deposition, that simultaneously enhances osseointegration while improving infection resistance, by testing ex vivo implantation stability in an equine cadaver bone followed by in vitro and in vivo analysis to understand the biocompatibility and early stage osseointegration. Methods. 100nm diameter and 300nm length TiO. 2. nanotubes were formed on a CP titanium surface using anodization method at 20V for 45mins using 1% HF electrolyte. Silver deposition on TiO. 2. nanotubes were performed using 0.1M AgNO. 3. solution at 3V for 45s. Figure 1 shows SEM images showing (a) TiO. 2. nanotubes of 300nm length and (b) nanotubes with silver coating). Ti anodized samples with and without silver nanotubes implanted into an equine cadaver bone in an ex vivo manner to study the stability of nanotubes and the adherence of silver deposition. Silver release study was performed for a period of 14 days in a similar ex vivo manner. Dimensions for implantation samples: 2.5 mm diam. × 15 mm. For cell culture, circular disc samples 12.5mm in diameter and 3 mm in thickness were used to study the bone cell-material interactions using human fetal osteoblast (hFOB) cells. To evaluate the cell proliferation, MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay was used. The in vitro cell-materials interaction study was performed for a period of 4 and 7 days. In vivo study was performed using rat distal femur model for a period of 12 weeks with dense Ti samples as control (Sample dimensions: 3mm diam. × 5mm). At the end of 12 weeks, the samples were analyzed for early stage osseointegration using histological analysis and SEM imaging. Results. No significant changes in the morphology of nanotubes was observed due to the implantation process which signifies the damage resistance these nanotubes can endure during implantation and explantation. Figure 2 shows SEM images of (a) & (b) nanotubes without silver coating before and after implantation and (c) & (d) nanotubes with silver coating before and after implantation respectively. Silver nanocoatings can be observed after implantation which shows the adherence of the antimicrobial nano-coating on the surface of nanotubes. Cumulative release profiles of
Introduction. Various anti-infective agents can be added to the surface of orthopaedic implants to actively kill bacteria and prevent infection. Silver (Ag) is a commonly used agent in various anti-infective applications. Silver disrupts bacterial membranes and binds to bacterial DNA and to the sulfhydryl groups of metabolic enzymes in the bacterial electron transport chain, thus inactivating bacterial replication and key metabolic processes. Recently we are implanting Silver coated megaprosthesis for the treatment of post-traumatic septic non unions/bone defects and for infected hip or knee prosthesis revision. We treat these complications utilizing a two steps procedure: 1° step: devices removal, resection, debridment and antibiotic spacer implantation; 2° step: spacer removal and megaprosthesis implantation. This technique produce a reactive pseudosynovial membrane, well known in traumatology (Masquelet technique), following the Chamber Induction Technique principles. This chamber creates the perfect environment in which implant the prosthesis with safety. We are nowadays investigating if this membrane could optimize the Silver antimicrobical effects reducing the
This study was performed to investigate the concentration of
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article:
We conducted a case-control study to examine
the merit of silver-coated tumour prostheses. We reviewed 85 patients
with Agluna-treated (silver-coated) tumour implants treated between
2006 and 2011 and matched them with 85 control patients treated
between 2001 and 2011 with identical, but uncoated, tumour prostheses. In all, 106 men and 64 women with a mean age of 42.2 years (18.4
to 90.4) were included in the study. There were 50 primary reconstructions
(29.4%); 79 one-stage revisions (46.5%) and 41 two-stage revisions
for infection (24.1%). The overall post-operative infection rate of the silver-coated
group was 11.8% compared with 22.4% for the control group (p = 0.033,
chi-square test). A total of seven of the ten infected prostheses
in the silver-coated group were treated successfully with debridement,
antibiotics, and implant retention compared with only six of the
19 patients (31.6%) in the control group (p = 0.048, chi-square
test). Three patients in the silver-coated group (3.5%) and 13 controls
(15.3%) had chronic periprosthetic infection (p = 0.009, chi-square
test). The overall success rates in controlling infection by two-stage
revision in the silver-coated group was 85% (17/20) compared with
57.1% (12/21) in the control group (p = 0.05, chi-square test).
The Agluna-treated endoprostheses were associated with a lower rate
of early periprosthetic infection. These silver-treated implants
were particularly useful in two-stage revisions for infection and
in those patients with incidental positive cultures at the time
of implantation of the prosthesis. Debridement with antibiotic treatment and retention of the implant
appeared to be more successful with silver-coated implants. Cite this article:
Introduction. Infection of endoprostheses is a serious complication in orthopedic surgery. As silver is known for its antibactierial effects, silver-coated endoprostheses have gained increased attention to decrease infection rates. However, cytotoxic effects of silver on bone cells have not been investigated in detail. We aimed to investigate whether silver nano-/microparticles and ionic silver exert cytotoxic effects on osteoblasts and osteoclasts in vitro and to correlate potential effects with the antibacterial effect on Staph. epidermidis. Methods. Murine osteoclasts (OC) and murine osteoblasts (OB) were treated with silver particles (avg. sizes: 50nm, 3μm, 30μm, 8μg/ml–500μg/ml) and Ag+NO3- (0.5μg/ml–500μg/ml). Silver treatment started on day 3 to prevent interference with cell adhesion. XTT assays were performed to assess cell viability. Tartrate resistant acidic phosphatase (TRAP) activity and alkaline phosphatase (ALP) activity served as measures for OC and OB differentiation, respectively. The release of
Megaendoprotheses are widely used in the reconstruction of large bone defects in orthopaedic tumour surgery. The major complications (up to 36%) are periprosthetic infections. Persisting periprosthetic infections lead to secondary amputation up to 37% of the cases. One underestimated reason for persisting infections are subpopulations of S. aureus called “small colony variants” (SCVs). Aim of this study was to evaluate that
From 1992 on 2008, 615/515 patients underwent primary or revisional endoprosthetic replacement of major joints. In 51 patients (31 men &
20 women) modular system MUTARS (Implantcast, Germany) has been used. The median age was 23.3 years (15 to 52 years). MUTARS modular endoprosthesis has been used in 10 patients with deep infection of endoprosthetic bed as a revisional endoprosthetic replacement: 1 Total endoprosthetic replacement of femur, 5 Total knee joint replacement (2 for distal femoral defect and 3 for proximal tibial defect). In 3(27%) patients, we used newly patented