Periprosthetic joint infection (PJI) represents a complex challenge in orthopaedic surgery associated with substantial morbidity and healthcare expenditures. The debridement, antibiotics, and implant retention (DAIR) protocol is a viable treatment, offering several advantages over exchange arthroplasty. With the evolution of treatment strategies, considerable efforts have been directed towards enhancing the efficacy of DAIR, including the development of a phased debridement protocol for acute PJI management. This article provides an in-depth analysis of DAIR, presenting the outcomes of single-stage, two-stage, and repeated DAIR procedures. It delves into the challenges faced, including patient heterogeneity, pathogen identification, variability in surgical techniques, and antibiotics selection. Moreover, critical factors that influence the decision-making process between single- and two-stage DAIR protocols are addressed, including team composition, timing of the intervention, antibiotic regimens, and both anatomical and implant-related considerations. By providing a comprehensive overview of DAIR protocols and their clinical implications, this annotation aims to elucidate the advancements, challenges, and potential future directions in the application of DAIR for PJI management. It is intended to equip clinicians with the insights required to effectively navigate the complexities of implementing DAIR strategies, thereby facilitating informed decision-making for optimizing patient outcomes. Cite this article:
Aim. Arthroscopic interventions have revolutionized the treatment of joint pathologies. The appropriate diagnostics and treatment are required for infections after ligament reconstructions using non-resorbable material such as tendon grafts, anchors, and sutures, prone to biofilm formation. The infection rate is around 1% for knee and shoulder, while up to 4% for Achilles tendon reconstructions. Despite high number of these procedures worldwide, there is limited evidence about the best treatment protocol. Our study aimed to provide a general protocol for the treatment of small implants for soft tissue reconstruction. Method. Between 2019 and 2023, we treated 48 infections of ligament, meniscus, and tendon reconstructions out of 7291 related procedures performed in the same time period. Early infection (<30 days) were treated with an arthroscopic debridement and implant retention (DAIR), except Achilles tendons had open DAIR, while those with delayed or chronic infection (>30 days) were treated with extensive debridement and lavage combined with one-stage exchange (OSE) or implant removal. During surgery, at least 5 microbiological s and samples for histopathology were obtained. The removed material was sonicated. After surgery, all patients were one week on iv. antibiotics, followed by oral antibiofilm antibiotics for 6 weeks including
Aim. An instrumented blood culture system automatically flags when growth within the culture medium has been detected (‘work in progress’), and subsequently when the organism has been identified. We explore using this data to switch patients to oral therapy within 72 hours post-surgery, reducing costs and improving antimicrobial stewardship. Method. This retrospective review focused on clinically significant culture-positive bone and joint infections over a 5-month period in 2022. Two cohorts were defined as either having positive intraoperative microbiology at <72 hours or at ≥72 hours. Results. 150 patients were included. 133/150(88%) exhibited microbial growth <72hours. Of these, 98/133(74%) had all organisms identified <72-hours, and 34/133(26%) had additional organisms ≥72 hours. 19/151(12%) patients had their first positive cultures ≥72hrs from sampling. The most common isolates identified within 72 hours were S. aureus(30%), Enterobacteriaceae (26%), and Coagulase-negative Staphylococcus (CoNS)(19%). If no growth was observed by 48 hours, there was a 69.6% probability that subsequent growth wouldn't occur; this probability increases to 81.9% by 72 hours, 88.7% by 96 hours, 91.0% by 120 hours, and 95.0% by 144 hours (see figure 1). The most common isolates identified ≥72 hours were CoNS(28%), Cutibacterium acnes(16%) and S. aureus(12%). Assessing oral antibiotic regimes for isolates identified after 72 hours demonstrated that linezolid would cover isolates from 96% of patients, tetracyclines 92% of patients, clindamycin 85% of patients, and ciprofloxacin and
Aim. The SOLARIO trial is a randomised controlled non-inferiority trial of antibiotic strategy for bone and joint infection. SOLARIO compares short or long post-operative systemic antibiotic duration, for patients with confirmed infections, who had local antibiotics implanted and no infected metalwork retained when undergoing surgery. This analysis compared systemic antibiotic use in the short (intervention) and long (standard of care) arms of the trial, in the 12 months after index surgery. Method. Data was collected prospectively from study randomisation, within 7 days of index surgery. All systemic antibiotics prescribed for the index infection were recorded, from health records and patient recall, at randomisation, 6 weeks, 3-6 months and 12 months after study entry. Start and end dates for each antibiotic were recorded. Results. 251 patients were randomised to short systemic antibiotics (up to 7 post-operative days) and 249 patients, to long systemic antibiotics. 5 participants in the short group and 2 participants in the long group withdrew from study follow-up. Complete data for all systemic antibiotics taken in the 12 months following surgery, were available for 237 participants in the short group and 236 participants in the long group. 80 participants across both groups were noted as having deviated from their assigned treatment strategy. Both groups received empiric antibiotics, predominantly vancomycin and meropenem, for up to 7 days after surgery. Considering each prescribed antibiotic as a separate duration (even when administered concurrently), participants assigned to standard care received a mean of 74.9 antibiotic-days. Participants assigned to short systemic antibiotics received a mean of 27.5 antibiotic-days in the 12 months after surgery. The most commonly prescribed antibiotics in both treatment groups were vancomycin and meropenem: these antibiotics accounted for 7.1 days prescribed per participant in the long group, and 6.3 days in the short group (p=0.37). Reasons for post-randomisation antibiotic prescribing in the short treatment group included later planned surgery, identification of bacteria requiring additional systemic antibiotics, and treatment of superficial wound infections. WHO AWaRe classification ‘watch’ and ‘reserve’ group antibiotics, such as ciprofloxacin,
Aim. The management of PJIs is slowed down by the presence of bacteria forming biofilms where they may withstand antibiotic therapy. The use of adjuvant strategies, such as hydrolytic enzymes cocktail targeting biofilm matrices and facilitating their dispersion, is a promising option to limit impact of biofilms. Our aim was to evaluate the effect of enzymes cocktail combined with antibiotic dual therapy of
Aim. Periprosthetic joint infection (PJI) is a complication of total joint arthroplasty that typically requires revision surgery for treatment. Systemic antibiotics are usually held prior to surgery to improve yield of intraoperative cultures. However, recent studies suggest that preoperative aspirations have a high concordance with intraoperative cultures, which may allow surgeons to initiate antibiotic treatment earlier. The purpose of the study was to investigate the effect of Pre-surgical systemic antibiotic therapy on the bacterial burden within the periprosthetic space and systemic immune reaction. Method. PJI was induced with MSSA (Xen36) S. aureus in the right knee of 16-week old, female, C57BL6 mice using a previously validated murine model. Mice were randomized to three groups (n=8, each): control; Vanc, receiving systemic vancomycin (110mg/kg, SQ, twice daily); or VancRif receiving vancomycin same as in Vanc group, plus
Aim.
Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation).
This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not.Aims
Methods
Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the For the haematogenous infection, Aims
Methods
Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.Aims
Methods
This study aimed to investigate the clinical characteristics and outcomes associated with culture-negative limb osteomyelitis patients. A total of 1,047 limb osteomyelitis patients aged 18 years or older who underwent debridement and intraoperative culture at our clinic centre from 1 January 2011 to 31 December 2020 were included. Patient characteristics, infection eradication, and complications were analyzed between culture-negative and culture-positive cohorts.Aims
Methods
To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI). A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).Aims
Methods
Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin +
Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection. Results. When 10 mM or higher EDTA-NS concentrations were used for ten minutes, over 99% of S. aureus biofilm formed on all three types of materials was eradicated in terms of absorbance measured at 595 nm and colony-forming units (CFUs) after culturing. Consistently, SEM and CSLM scanning demonstrated that less adherence of S. aureus could be observed on all three types of materials after 10 mM EDTA-NS irrigation for ten minutes. In the rat model, compared with NS irrigation combined with
This study aimed to evaluate the clinical application of the PJI-TNM classification for periprosthetic joint infection (PJI) by determining intraobserver and interobserver reliability. To facilitate its use in clinical practice, an educational app was subsequently developed and evaluated. A total of ten orthopaedic surgeons classified 20 cases of PJI based on the PJI-TNM classification. Subsequently, the classification was re-evaluated using the PJI-TNM app. Classification accuracy was calculated separately for each subcategory (reinfection, tissue and implant condition, non-human cells, and morbidity of the patient). Fleiss’ kappa and Cohen’s kappa were calculated for interobserver and intraobserver reliability, respectively.Aims
Methods
A higher failure rate has been reported in haematogenous periprosthetic joint infection (PJI) compared to non-haematogenous PJI. The reason for this difference is unknown. We investigated the outcome of haematogenous and non-haematogenous PJI to analyze the risk factors for failure in both groups of patients. Episodes of knee or hip PJI (defined by the European Bone and Joint Infection Society criteria) treated at our institution between January 2015 and October 2020 were included in a retrospective PJI cohort. Episodes with a follow-up of > one year were stratified by route of infection into haematogenous and non-haematogenous PJI. Probability of failure-free survival was estimated using the Kaplan-Meier method, and compared between groups using log-rank test. Univariate and multivariate analysis was applied to assess risk factors for failure.Aims
Methods
Abstract Background. The treatment of bone and joint infections (BJI) involving multi-drug resistant bacteria remains a challenge. MDR Staphylococcus epidermidis (MDRSE) clones, resistant to methicillin, clindamycin, levofloxacin,
Aim. There is growing evidence that bacteria encountered in periprosthetic joint infections (PJI) form surface-attached biofilms on prostheses, as well as biofilm aggregates embedded in synovial fluid and tissues. However, models allowing the investigation of these biofilms and the assessment of their antimicrobial susceptibility in physiologically relevant conditions are currently lacking. To address this, we developed a synthetic synovial fluid (SSF) model and we validated this model in terms of growth, aggregate formation and antimicrobial susceptibility testing, using multiple PJI isolates. Methods. 17 PJI isolates were included, belonging to Staphylococcus aureus, coagulase negative staphylococci, Cutibacterium acnes, Pseudomonas aeruginosa, enterococci, streptococci, Candida species and Enterobacterales. Growth and aggregate formation in SSF, under microaerophilic or anaerobic conditions, were evaluated using light microscopy. The biofilm preventing concentration (BPC) and minimum biofilm inhibitory concentration (MBIC) of relevant antibiotics (doxycyclin,
Aim.